Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Developing future heat-resilient vegetable crops.

Tytuł:
Developing future heat-resilient vegetable crops.
Autorzy:
Saeed F; Department of Agricultural Genetic Engineering, Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, 51240, Nigde, Turkey.
Chaudhry UK; Department of Agricultural Genetic Engineering, Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, 51240, Nigde, Turkey.
Raza A; College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China.
Charagh S; State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China.
Bakhsh A; Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan.
Bohra A; State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Murdoch University, Murdoch, 6150, Australia.
Ali S; Akhuwat Faisalabad Institute of Research Science and Technology, Faisalabad, Pakistan.
Chitikineni A; State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Murdoch University, Murdoch, 6150, Australia.; Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India.
Saeed Y; Department of Plant Pathology, Faculty of Agriculture, University of Agriculture, Faisalabad, 38040, Pakistan.
Visser RGF; Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, 15, Wageningen, The Netherlands.
Siddique KHM; The UWA Institute of Agriculture, The University of Western Australia, Perth, 6001, Australia.
Varshney RK; State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Murdoch University, Murdoch, 6150, Australia. .; Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India. .
Źródło:
Functional & integrative genomics [Funct Integr Genomics] 2023 Jan 24; Vol. 23 (1), pp. 47. Date of Electronic Publication: 2023 Jan 24.
Typ publikacji:
Journal Article; Review
Język:
English
Imprint Name(s):
Original Publication: Berlin : Springer, c2000-
MeSH Terms:
Vegetables*/genetics
Plant Breeding*
Humans ; Crops, Agricultural/genetics ; Genomics ; Proteomics
References:
Abbas F (2013) Analysis of a historical (1981–2010) temperature record of the Punjab Province of Pakistan. Earth Interact 17:1–23. https://doi.org/10.1175/2013EI000528.1. (PMID: 10.1175/2013EI000528.1)
Abdalla N, Taha N, El-Ramady H, Bayoumi Y (2020) Management of heat stress in tomato seedlings under arid and semi-arid regions: a review. Environ Biodivers Soil Secur 4:0–0. https://doi.org/10.21608/jenvbs.2020.28143.1089.
Adli M (2018) The CRISPR tool kit for genome editing and beyond. Nat Commun 9:1911. https://doi.org/10.1038/S41467-018-04252-2.
Aien A, Khetarpal S, Pal M (2011) Photosynthetic characteristics of potato cultivars grown under high temperature. Am Eurasian J Agric Environ Sci 11:633–639. https://doi.org/10.5829/idosi.wasj.2013.24.04.2311. (PMID: 10.5829/idosi.wasj.2013.24.04.2311)
Aksoy E, Demirel U, Öztürk ZN et al (2015) Recent advances in potato genomics, transcriptomics, and transgenics under drought and heat stresses: A review. Turk J Botany 39:920–940.
Aksoy E, Demirel U, Bakhsh A et al (2021) Recent advances in potato (Solanum tuberosum L.) breeding. In: Al-Khayri, JM, Jain SM, Johnson DV (eds) Advances in plant breeding strategies: vegetable crops. Springer, Cham. pp 409–487. https://doi.org/10.1007/978-3-030-66965-2_10.
Aleem S, Sharif I, Amin E et al (2020) Heat tolerance in vegetables in the current genomic era: an overview. Plant Growth Regul 92:497–516.
Ali SS, Ahsan H, Zia MK et al (2020) Understanding oxidants and antioxidants: classical team with new players. J Food Biochem 44:e13145.
Almeida J, Perez-Fons L, Fraser PD (2021) A transcriptomic, metabolomic and cellular approach to the physiological adaptation of tomato fruit to high temperature. Plant Cell Environ 44:2211–2229. https://doi.org/10.1111/PCE.13854. (PMID: 10.1111/PCE.13854)
Andrási N, Pettkó-Szandtner A, Szabados L (2021) Diversity of plant heat shock factors: Regulation, interactions, and functions. J Exp Bot 72:1558–1575.
Anjum NA, Amreen TAY et al (2020) Reactive oxygen species detection-approaches in plants: Insights into genetically encoded FRET-based sensors. J Biotechnol 308:108–117.
Asaeda T, Senavirathna MDHJ, Vamsi Krishna L (2020) Evaluation of habitat preferences of invasive macrophyte egeria densa in different channel slopes using hydrogen peroxide as an indicator. Front Plant Sci 11:422. https://doi.org/10.3389/fpls.2020.00422. (PMID: 10.3389/fpls.2020.00422)
Asim A, Öztürk Gökçe ZN, Bakhsh A et al (2021) Individual and combined effect of drought and heat stresses in contrasting potato cultivars overexpressing mir172b-3p. Turkish J Agric for 45:651–668. https://doi.org/10.3906/TAR-2103-60. (PMID: 10.3906/TAR-2103-60)
Aune D, Giovannucci E, Boffetta P et al (2017) Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality-A systematic review and dose-response meta-analysis of prospective studies. Int J Epidemiol 46:1029–1056. https://doi.org/10.1093/ije/dyw319. (PMID: 10.1093/ije/dyw319)
Banerjee A, Roychoudhury A (2017) Abiotic stress, generation of reactive oxygen species, and their consequences: an overview. In: Singh VP, Singh S, Tripathi DK, Prasad SM, Chauhan DK (eds). Reactive oxygen species in plants: boon or bane - revisiting the role of ROS. Wiley, UK. pp 23–50. https://doi.org/10.1002/9781119324928.ch2.
Bano C, Amist N, Singh NB (2020) Role of polyamines in plants abiotic stress tolerance: advances and future prospects. In: Tripathi DK, Chauhan DK, Prasad SM, Ramawat N, Singh VP, Sharma S, Dubey NK (eds). Plant life under changing environment. Elsevier, Academic Press, USA. pp 481–496. https://doi.org/10.1016/B978-0-12-818204-8.00021-7.
Bellstaedt J, Trenner J, Lippmann R et al (2019) A mobile auxin signal connects temperature sensing in cotyledons with growth responses in hypocotyls. Plant Physiol 180:757–766. https://doi.org/10.1104/pp.18.01377. (PMID: 10.1104/pp.18.01377)
Bisbis MB, Gruda N, Blanke M (2018) Potential impacts of climate change on vegetable production and product quality – a review. J Clean Prod 170:1602–1620.
Boscaiu M, Fita A (2020) Physiological and molecular characterization of crop resistance to abiotic stresses. Agronomy 10:. https://doi.org/10.3390/agronomy10091308.
Bulgari R, Franzoni G, Ferrante A (2019) Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy 9(6):309. https://doi.org/10.3390/agronomy9060306.
Cappetta E, Andolfo G, Guadagno A et al (2021) Tomato genomic prediction for good performance under high-temperature and identification of loci involved in thermotolerance response. Hortic Res 8:212–228. https://doi.org/10.1038/s41438-021-00647-3.
Cardi T, Batelli G, Nicolia A (2017a) Opportunities for genome editing in vegetable crops. Emerg Top Life Sci 1:193–207.  https://doi.org/10.1042/ETLS20170033.
Cardi T, D’Agostino N, Tripodi P (2017b) Genetic transformation and genomic resources for next-generation precise genome engineering in vegetable crops. Front Plant Sci 8:1–16. https://doi.org/10.3389/fpls.2017.00241.
Cen YP, Sage RF (2005) The regulation of Rubisco activity in response to variation in temperature and atmospheric CO 2 partial pressure in sweet potato. Plant Physiol 139:979–990. https://doi.org/10.1104/pp.105.066233. (PMID: 10.1104/pp.105.066233)
Chang KY, Lin KH, Lo HF (2016) Physiology and proteomics of cabbage under heat and flooding stress. Res. Rev. J Bot Sci 5:44–53.
Chaudhary S, Devi P, HanumanthaRao B, Jha UC, Sharma KD, Prasad PV, Kumar S, Siddique KH, Nayyar H (2022) Physiological and molecular approaches for developing thermotolerance in vegetable crops: a growth, yield and sustenance perspective. Front Plant Sci 13:878498.
Chaudhry UK, Gökçe ZNÖ, Gökçe AF (2021) Drought and salt stress effects on biochemical changes and gene expression of photosystem II and catalase genes in selected onion cultivars. Biologia 76:3107–3121. https://doi.org/10.1007/S11756-021-00827-5. (PMID: 10.1007/S11756-021-00827-5)
Chen WL, Yang WJ, Lo HF et al (2014) Physiology, anatomy, and cell membrane thermostability selection of leafy radish (Raphanus sativus var. oleiformis Pers.) with different tolerance under heat stress. Sci Hortic 179:367–375.
Chen F, Song Y, Li X et al (2019a) Genome sequences of horticultural plants: past, present, and future. Hortic Res 6:1–23. https://doi.org/10.1038/s41438-019-0195-6.
Chen S, Guo Y, Sirault X et al (2019b) Nondestructive phenomic tools for the prediction of heat and drought tolerance at anthesis in Brassica species. Plant Phenomics 2019b. https://doi.org/10.34133/2019/3264872.
Chen Z, Ly Vu J, Ly Vu B et al (2021) Genome-wide association studies of seed performance traits in response to heat stress in medicago truncatula uncover MIEL1 as a regulator of seed germination plasticity. Front Plant Sci 12. https://doi.org/10.3389/fpls.2021.673072.
Cheng L, Zou Y, Ding S et al (2009) Polyamine accumulation in transgenic tomato enhances the tolerance to high temperature stress. J Integr Plant Biol 51:489–499. https://doi.org/10.1111/j.1744-7909.2009.00816.x. (PMID: 10.1111/j.1744-7909.2009.00816.x)
Cheng L, Sun RR, Wang FY et al (2012) Spermidine affects the transcriptome responses to high temperature stress in ripening tomato fruit. J Zhejiang Univ Sci B 13:283–297. https://doi.org/10.1631/jzus.b1100060. (PMID: 10.1631/jzus.b1100060)
Cheng C, Liu Y, Fang W et al (2020) ITRAQ-based proteomic and physiological analyses of mustard sprouts in response to heat stress. RSC Adv 10:6052–6062. https://doi.org/10.1039/c9ra10089j. (PMID: 10.1039/c9ra10089j)
Collado-González J, Piñero MC, Otálora G et al (2021) Effects of different nitrogen forms and exogenous application of putrescine on heat stress of cauliflower: Photosynthetic gas exchange, mineral concentration and lipid peroxidation. Plants 10:1–19. https://doi.org/10.3390/plants10010152. (PMID: 10.3390/plants10010152)
Collado-González J, Piñero MC, Otálora G et al (2021) Merging heat stress tolerance and health-promoting properties: The effects of exogenous arginine in cauliflower (Brassica oleracea var. botrytis l.). Foods 10:30. https://doi.org/10.3390/foods10010030.
Collado-González J, Piñero MC, Otálora G, et al (2021b) Exogenous spermidine modifies nutritional and bioactive constituents of cauliflower (Brassica oleracea var. botrytis L.) florets under heat stress. Sci Hortic 277:109818. https://doi.org/10.1016/j.scienta.2020.109818.
Czarnocka W, Karpiński S (2018) Friend or foe? Reactive oxygen species production, scavenging and signaling in plant response to environmental stresses. Free Radic Biol Med 122:4–20.
Dar MI, Naikoo MI, Khan FA et al (2017) An introduction to reactive oxygen species metabolism under changing climate in plants. In: Khan M, Khan N (eds) Reactive oxygen species and antioxidant systems in plants: role and regulation under abiotic stress. Springer, Singapore, pp 25–52.  https://doi.org/10.1007/978-981-10-5254-5_2.
Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:1–13. https://doi.org/10.3389/fenvs.2014.00053.
Dangol S Das, Hashmi MH, Saeed F et al (2021) Utilizing RNA-based approaches to understand plant-insect interactions. In RNA-based technologies for functional genomics in plants. Springer, Cham. pp 393–428. https://doi.org/10.1007/978-3-030-64994-4_17.
Delker C, Sonntag L, James GV et al (2014) The DET1-COP1-HY5 pathway constitutes a multipurpose signaling module regulating plant photomorphogenesis and thermomorphogenesis. Cell Rep 9:1983–1989. https://doi.org/10.1016/j.celrep.2014.11.043. (PMID: 10.1016/j.celrep.2014.11.043)
Demirel U, Morris WL, Ducreux LJM et al (2020) Physiological, biochemical, and transcriptional responses to single and combined abiotic stress in stress-tolerant and stress-sensitive potato genotypes. Front Plant Sci 11. https://doi.org/10.3389/fpls.2020.00169.
Dhatt BK, Abshire N, Paul P et al (2019) Metabolic dynamics of developing rice seeds under high night-time temperature stress. Front Plant Sci 10. https://doi.org/10.3389/fpls.2019.01443.
Dong S, Zhang S, Wei S et al (2020) Identification of quantitative trait loci controlling high-temperature tolerance in cucumber (Cucumis sativus L.) seedlings. Plants 9:1–11. https://doi.org/10.3390/plants9091155. (PMID: 10.3390/plants9091155)
Dumanović J, Nepovimova E, Natić M et al (2021) The significance of reactive oxygen species and antioxidant defense system in plants: a concise overview. Front Plant Sci 11:1–13. https://doi.org/10.3389/fpls.2020.552969.
Fahad S, Bajwa AA, Nazir U et al (2017) Crop production under drought and heat stress: plant responses and management options. Front Plant Sci 8:11–47. https://doi.org/10.3389/fpls.2017.01147.
Feng XH, Zhang HX, Ali M et al (2019) A small heat shock protein CaHsp25. 9 positively regulates heat, salt, and drought stress tolerance in pepper (Capsicum annuum L.). Plant Physiol Biochem 142:151–162.
Fragkostefanakis S, Röth S, Schleiff E, Scharf KD (2015) Prospects of engineering thermotolerance in crops through modulation of heat stress transcription factor and heat shock protein networks. Plant Cell Environ 38:1881–1895.
Friedrich T, Oberkofler V, Trindade I et al (2021) Heteromeric HSFA2/HSFA3 complexes drive transcriptional memory after heat stress in Arabidopsis. Nat Commun 12:1–15. https://doi.org/10.1038/s41467-021-23786-6. (PMID: 10.1038/s41467-021-23786-6)
Gao G, Tester MA, Julkowska MM (2020) The use of high-throughput phenotyping for assessment of heat stress-induced changes in arabidopsis. Plant Phenomics 2020. https://doi.org/10.34133/2020/3723916.
García-Caparrós P, De Filippis L, Gul A et al (2020) Oxidative stress and antioxidant metabolism under adverse environmental conditions: a review. Bot Rev 1–46. https://doi.org/10.1007/s12229-020-09231-1.
Gautam V, Kaur R, Kohli SK et al (2017) ROS compartmentalization in plant cells under abiotic stress condition. Reactive Oxygen Species and Antioxidant Systems in Plants: Role and Regulation under Abiotic Stress. Springer, Singapore, pp 89–114.
Georgieva K, Lichtenthaler HK (2006) Photosynthetic response of different pea cultivars to low and high temperature treatments. Photosynthetica 44:569–578. https://doi.org/10.1007/s11099-006-0073-y. (PMID: 10.1007/s11099-006-0073-y)
Giordano M, Petropoulos SA, Rouphael Y (2021) Response and defence mechanisms of vegetable crops against drought, heat and salinity stress. Agriculture 11:463–493. https://doi.org/10.3390/agriculture11050463.
Gökçe ZNÖ, Gökçe AF, Junaid MD, Chaudhry UK (2022) Morphological, physiological, and biochemical responses of onion (Allium cepa L.) breeding lines to single and combined salt and drought stresses. Euphytica 218. https://doi.org/10.1007/s10681-022-02980-7.
Grossiord C, Sevanto S, Borrego I et al (2017) Tree water dynamics in a drying and warming world. Plant, Cell Environ 40(9):1861–1873.
Grossiord C, Buckley TN, Cernusak LA et al (2020) Plant responses to rising vapor pressure deficit. New Phytol 226:1550–1566.
Guo M, Lu JP, Zhai YF et al (2015) Genome-wide analysis, expression profile of heat shock factor gene family (CaHsfs) and characterisation of CaHsfA2 in pepper (Capsicum annuum L.). BMC Plant Biol 15. https://doi.org/10.1186/s12870-015-0512-7.
Guo R, Wang X, Han X et al (2020) Physiological and transcriptomic responses of water spinach (Ipomoea aquatica) to prolonged heat stress. BMC Genomics 21. https://doi.org/10.1186/s12864-020-06953-9.
Haider S, Raza A, Iqbal J et al (2022) Analyzing the regulatory role of heat shock transcription factors in plant heat stress tolerance: a brief appraisal. Mol Biol Rep 49:5771–5785. https://doi.org/10.1007/s11033-022-07190-x. (PMID: 10.1007/s11033-022-07190-x)
Haider MS, Jaskani MJ, Fang J (2021) Overproduction of ROS: underlying molecular mechanism of scavenging and redox signaling. In: Jogaiah S, (eds). Biocontrol Agents second metabolites. Elsevier, Woodhead Publishing, UK. pp 347–382. https://doi.org/10.1016/B978-0-12-822919-4.00014-4.
Haldimann P, Feller URS (2005) Growth at moderately elevated temperature alters the physiological response of the photosynthetic apparatus to heat stress in pea (Pisum sativum L.) leaves. Plant Cell Environ 28:302–317. https://doi.org/10.1111/j.1365-3040.2005.01289.x. (PMID: 10.1111/j.1365-3040.2005.01289.x)
Hannachi S, Signore A, Adnan M, Mechi L (2022) Single and associated effects of drought and heat stresses on physiological, biochemical and antioxidant machinery of four eggplant cultivars. Plants 11(18):2404.
Hao JH, Zhang LL, Li PP et al (2018) Quantitative proteomics analysis of lettuce (Lactuca sativa L.) reveals molecular basis-associated auxin and photosynthesis with bolting induced by high temperature. Int J Mol Sci 19. https://doi.org/10.3390/ijms19102967.
Haq SU, Khan A, Ali M et al (2019) Knockdown of CaHSP60-6 confers enhanced sensitivity to heat stress in pepper (Capsicum annuum L.). Planta 250:2127–2145. https://doi.org/10.1007/s00425-019-03290-4. (PMID: 10.1007/s00425-019-03290-4)
Haque MS, Husna MT, Uddin MN et al (2021) Heat stress at early reproductive stage differentially alters several physiological and biochemical traits of three tomato cultivars. Horticulturae 7. https://doi.org/10.3390/horticulturae7100330.
Hasanuzzaman M, Borhannuddin Bhuyan MHM, Anee TI et al (2019) Regulation of ascorbate-glutathione pathway in mitigating oxidative damage in plants under abiotic stress. Antioxidants 8:384.
Hasanuzzaman M, Bhuyan MHMB, Zulfiqar F et al (2020) Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants 9:1–52.
Hassan MU, Chattha MU, Khan I et al (2021a) Heat stress in cultivated plants: nature, impact, mechanisms, and mitigation strategies—a review. Plant Biosyst 155:211–234.  https://doi.org/10.1080/11263504.2020.1727987.
Hassan MU, Rasool T, Iqbal C et al (2021b) Linking plants functioning to adaptive responses under heat stress conditions: a mechanistic review. J Plant Growth Regul 41(7):2596–2613. https://doi.org/10.1007/s00344-021-10493-1.
Hatfield JL, Dold C (2019) Water-use efficiency: advances and challenges in a changing climate. Front in Plant Sci 10:103. https://doi.org/10.3389/fpls.2019.00103.
Hayamanesh S (2018) The effect of high temperature on physiological and metabolic parameters and reproductive tissues of okra (Abelmoschus esculentus (L.) Moench) (Doctoral dissertation). The University of Sydney, Sydney, NSW, Australia. (Doctoral dissertation), pp 1–181. http://hdl.handle.net/2123/18097.
Heider B, Struelens Q, Faye É et al (2021) Intraspecific diversity as a reservoir for heat-stress tolerance in sweet potato. Nat Clim Chang 11:64–69. https://doi.org/10.1038/s41558-020-00924-4. (PMID: 10.1038/s41558-020-00924-4)
Hijmans RJ (2003) The effect of climate change on global potato production. Am J Potato Res 80:271–279. https://doi.org/10.1007/BF02855363. (PMID: 10.1007/BF02855363)
Hu Z, Li J, Ding S et al (2021) The protein kinase CPK28 phosphorylates ascorbate peroxidase and enhances thermotolerance in tomato. Plant Physiol 186:1302–1317. https://doi.org/10.1093/PLPHYS/KIAB120. (PMID: 10.1093/PLPHYS/KIAB120)
Huang Y, Li MY, Wang F et al (2015) Heat shock factors in carrot: genome-wide identification, classification, and expression profiles response to abiotic stress. Mol Biol Rep 42:893–905. https://doi.org/10.1007/s11033-014-3826-x. (PMID: 10.1007/s11033-014-3826-x)
Huang F, Wang J, Duan W, Hou X (2020) Identification and expression analysis of cold shock protein 3 (BcCSP3) in non-heading Chinese Cabbage (Brassica rapa ssp. chinensis). Plants 9(7):890.
Imran QM, Falak N, Hussain A et al (2021) Abiotic stress in plants, stress perception to molecular response and role of biotechnological tools in stress resistance. Agronomy 11. https://doi.org/10.3390/agronomy11081579.
Ito H, Kanayama Y, Shibuya T et al (2022) Effect of short-term temperature stress on fruit set and the expression of an auxin reporter gene and auxin synthesis genes in tomato. Sci Hortic 300:111039.
Jacob P, Hirt H, Bendahmane A (2017) The heat-shock protein/chaperone network and multiple stress resistance. Plant Biotechnol J 15:405–414.
Jagadish SVK, Way DA, Sharkey TD (2021) Plant heat stress: Concepts directing future research. Plant Cell Environ 44:1992–2005.
Janku M, Luhová L, Petrivalský M (2019) On the origin and fate of reactive oxygen species in plant cell compartments. Antioxidants 8:105.
Jha UC, Nayyar H, Palakurthi R et al (2021) Major QTLs and potential candidate genes for heat stress tolerance identified in chickpea (Cicer arietinum L.). Front Plant Sci 12. https://doi.org/10.3389/fpls.2021.655103.
Ji HS, Bang SG, Ahn MA et al (2021) Molecular cloning and functional characterization of heat stress-responsive superoxide dismutases in garlic (Allium sativum L.). Antioxidants 10(5):815.
Jiang J, Bai J, Li S et al (2018) HTT2 promotes plant thermotolerance in Brassica rapa. BMC Plant Biol 18. https://doi.org/10.1186/s12870-018-1346-x.
Jogawat A (2019) Osmolytes and their role in abiotic stress tolerance in plants. In: Roychoudhury A, Tripathi D (eds.), Molecular plant abiotic stress: Biology and biotechnology. Wiley, UK. pp 91–104. https://doi.org/10.1002/9781119463665.ch5.
Johansen TJ, Mølmann JA, Bengtsson GB et al (2017) Temperature and light conditions at different latitudes affect sensory quality of broccoli florets (Brassica oleracea L. var. italica). J Sci Food Agric 97(11):3500–3508.
Junaid MD, Chaudhry UK, Gökçe AF (2021) Climate change and plant growth – South asian perspective. In: Fahad S, Sönmez O, Saud S, Wang D, Wu C, Adnan M, Turan VT (eds.), Climate change plants. Taylor and Francis, CRC Press, Boca Raton. pp 37–53. https://doi.org/10.1201/9781003108931-3-3.
Kahlaoui B, Hachicha M, Misle E et al (2018) Physiological and biochemical responses to the exogenous application of proline of tomato plants irrigated with saline water. J Saudi Soc Agric Sci 17:17–23. https://doi.org/10.1016/j.jssas.2015.12.002. (PMID: 10.1016/j.jssas.2015.12.002)
Kaloki P, Devasirvatham V, Tan DK (2019) Chickpea abiotic stresses: combating drought, heat and cold. In: de Oliveira AB (ed), Abiotic and biotic stress in plants. intechOpen, London. pp139–162. https://doi.org/10.5772/intechopen.83404.
Kang Y, Lee K, Hoshikawa K, Kang M, Jang S (2022) Molecular bases of heat stress responses in vegetable crops with focusing on heat shock factors and heat shock proteins. Front Plant Sci 13:837152–837152. https://doi.org/10.3389/fpls.2022.837152. (PMID: 10.3389/fpls.2022.837152)
Kang WH, Sim YM, Koo N et al (2020) Transcriptome profiling of abiotic responses to heat, cold, salt, and osmotic stress of Capsicum annuum L. Sci Data 7. https://doi.org/10.1038/s41597-020-0352-7.
Kareem HA, Saleem MF, Saleem S et al (2022) Zinc oxide nanoparticles interplay with physiological and biochemical attributes in terminal heat stress alleviation in mungbean (Vigna radiata L.). Front Plant Sci 13:842349–842349.
Karimi T, Stöckle CO, Higgins SS, Nelson RL (2021) Impact of climate change on greenhouse gas emissions and water balance in a dryland-cropping region with variable precipitation. J Environ Manage 287. https://doi.org/10.1016/j.jenvman.2021.112301.
Karkute SG, Ansari WA, Singh AK et al (2021) Characterization of high-temperature stress-tolerant tomato (Solanum lycopersicum L.) genotypes by biochemical analysis and expression profiling of heat-responsive genes. 3 Biotech 11. https://doi.org/10.1007/s13205-020-02587-6.
Kawasaki Y, Yoneda Y (2019) Local temperature control in greenhouse vegetable production. Hortic J 88:305–314. https://doi.org/10.2503/HORTJ.UTD-R004. (PMID: 10.2503/HORTJ.UTD-R004)
Khan N, Ali S, Zandi P et al (2020) Role of sugars, amino acids and organic acids in improving plant abiotic stress tolerance. Pakistan J Bot 52:355–363. https://doi.org/10.30848/PJB2020-2(24). (PMID: 10.30848/PJB2020-2(24))
Khan Z, Shahwar D (2020) Role of heat shock proteins (HSPs) and heat stress tolerance in crop plants. Sustain Agric Era Clim Chang 211–234. https://doi.org/10.1007/978-3-030-45669-6_9.
Kidwai M, Ahmad IZ, Chakrabarty D (2020) Class III peroxidase: an indispensable enzyme for biotic/abiotic stress tolerance and a potent candidate for crop improvement. Plant Cell Rep 39:1381–1393.
Kim YU, Lee BW (2020) Earlier planting offsets the adverse effect of global warming on spring potato in South Korea. Sci Total Environ 742:140667.
Kole C, Muthamilarasan M, Henry R et al (2015) Application of genomics-assisted breeding for generation of climate resilient crops: Progress and prospects. Front Plant Sci 6:1–16. https://doi.org/10.3389/fpls.2015.00563.
Kumar Ghosh U, Nahidul Islam M, Nurealam Siddiqui M, Arifur Rahman Khan M (2021) Understanding the roles of osmolytes for acclimatizing plants to changing environment: a review of potential mechanism. Taylor Fr 16. https://doi.org/10.1080/15592324.2021.1913306.
Lamers J, Der Meer T, Van TC (2020) How plants sense and respond to stressful environments. Plant Physiol 182:1624–1635. https://doi.org/10.1104/PP.19.01464. (PMID: 10.1104/PP.19.01464)
Lamichaney A, Parihar AK, Hazra KK et al (2021) Untangling the influence of heat stress on crop phenology, seed set, seed weight, and germination in field pea (Pisum sativum L.). Front Plant Sci 12. https://doi.org/10.3389/fpls.2021.635868.
Lee J, Lee H, Wi S et al (2021) Enhancement of growth and antioxidant enzyme activities on kimchi cabbage by melatonin foliar application under high temperature and drought stress. Hortic Environ Biotechnol 1:583–592. https://doi.org/10.7235/HORT.20210052.
Legris M, Klose C, Burgie ES et al (2016) Phytochrome B integrates light and temperature signals in Arabidopsis. Science 354:897–900. https://doi.org/10.1126/science.aaf5656. (PMID: 10.1126/science.aaf5656)
Li S, Liu J, Liu Z et al (2014) HEAT-INDUCED TAS1 TARGET1 mediates thermotolerance via heat stress transcription factor A1a-directed pathways in arabidopsis. Plant Cell 26:1764–1780. https://doi.org/10.1105/tpc.114.124883. (PMID: 10.1105/tpc.114.124883)
Li H, Ahammed GJ, Zhou G et al (2016) Unraveling main limiting sites of photosynthesis under below-and above-ground heat stress in cucumber and the alleviatory role of luffa rootstock. Front Plant Sci 7:746.
Li T, Zhang Y, Liu Y et al (2020) Raffinose synthase enhances drought tolerance through raffinose synthesis or galactinol hydrolysis in maize and Arabidopsis plants. J Biol Chem 295:8064–8077. https://doi.org/10.1074/JBC.RA120.013948. (PMID: 10.1074/JBC.RA120.013948)
Lin KH, Chen LFO, Li SD, Lo HF (2015) Comparative proteomic analysis of cauliflower under high temperature and flooding stresses. Sci Hortic 183:118–129. https://doi.org/10.1016/j.scienta.2014.12.013. (PMID: 10.1016/j.scienta.2014.12.013)
Liu L, Lin L (2020) Effect of heat stress on sargassum fusiforme leaf metabolome. J Plant Biol 63:229–241. https://doi.org/10.1007/s12374-020-09247-5. (PMID: 10.1007/s12374-020-09247-5)
Liu Y, Mu J, Niklas KJ et al (2012) Global warming reduces plant reproductive output for temperate multi-inflorescence species on the Tibetan plateau. New Phytol 195(2):427–436.
Liu Y, Dong S, Wei S et al (2021) QTL mapping of heat tolerance in cucumber (Cucumis sativus L.) at adult stage. Plants 10:1–14. https://doi.org/10.3390/plants10020324. (PMID: 10.3390/plants10020324)
Liu S, Huang Q, Ren D et al (2021a) Soil evaporation and its impact on salt accumulation in different landscapes under freeze–thaw conditions in an arid seasonal frozen region. Vadose Zo J 20. https://doi.org/10.1002/vzj2.20098.
Mahmud J Al, Borhannuddin Bhuyan MHM, Nahar K et al (2020) Response and tolerance of fabaceae plants to metal/metalloid toxicity. In: Hasanuzzaman M, Araújo S, Gill S (eds). The plant family fabaceae. Springer, Singapore. pp 435–482. https://doi.org/10.1007/978-981-15-4752-2_17.
Mao L, Deng M, Jiang S et al (2020) Characterization of the DREBA4-Type transcription factor (SlDREBA4), which contributes to heat tolerance in tomatoes. Front Plant Sci 11. https://doi.org/10.3389/fpls.2020.554520.
Medina E, Kim SH, Yun M, Choi WG (2021) Recapitulation of the function and role of ros generated in response to heat stress in plants. Plants 10:1–13.
Meitha K, Pramesti Y, Suhandono S (2020) Reactive oxygen species and antioxidants in postharvest vegetables and fruits. Int J Food Sci 8817778. https://doi.org/10.1155/2020/8817778.
Mittler R, Zandalinas SI, Fichman Y, Breusegem FV (2022) Reactive oxygen species signalling in plant stress responses. Nat Rev Mol Cell Biol 23(10):663–679. https://doi.org/10.1038/s41580-022-00499-2. (PMID: 10.1038/s41580-022-00499-2)
Molla R, Ali MR, Hasanuzzaman M et al (2014) Exogenous proline and betaine-induced upregulation of glutathione transferase and glyoxalase i in lentil (Lens culinaris) under drought stress. Not Bot Horti Agrobot Cluj-Napoca 42:73–80. https://doi.org/10.15835/nbha4219324. (PMID: 10.15835/nbha4219324)
Moradpour M, Abdullah SNA, Namasivayam P (2021) The impact of heat stress on morpho-physiological response and expression of specific genes in the heat stress-responsive transcriptional regulatory network in brassica oleracea. Plants 10. https://doi.org/10.3390/plants10061064.
Morán-Ordóñez A, Duane A, Gil-Tena A et al (2020) Future impact of climate extremes in the Mediterranean: Soil erosion projections when fire and extreme rainfall meet. L Degrad Dev 31:3040–3054. https://doi.org/10.1002/ldr.3694. (PMID: 10.1002/ldr.3694)
Mushtaq N, Wang Y, Fan J et al (2022) Down-regulation of cytokinin receptor gene slhk2 improves plant tolerance to drought, heat, and combined stresses in tomato. Plants 11. https://doi.org/10.3390/plants11020154.
Mustafavi SH, Shekari F, Abbasi A (2015) Putrescine improve low temperature tolerance of fennel (Foeniculum Vulgare Mill.) Seeds. Cercet Agron Mold 48:69–76. https://doi.org/10.1515/CERCE-2015-0018. (PMID: 10.1515/CERCE-2015-0018)
Nahar K, Hasanuzzaman M, Alam MM, Fujita M (2015) Exogenous glutathione confers high temperature stress tolerance in mung bean (Vigna radiata L.) by modulating antioxidant defense and methylglyoxal detoxification system. Environ Exp Bot 112:44–54. https://doi.org/10.1016/j.envexpbot.2014.12.001. (PMID: 10.1016/j.envexpbot.2014.12.001)
Nie WF, Xing E, Wang J et al (2022) Emerging strategies mold plasticity of vegetable plants in response to high temperature stress. Plants 11(7):959.
Nijabat A, Bolton A, Mahmood-Ur-Rehman M et al (2020) Cell membrane stability and relative cell injury in response to heat stress during early and late seedling stages of diverse carrot (Daucus carota L) germplasm. HortScience 55:1446–1452. https://doi.org/10.21273/HORTSCI15134-20. (PMID: 10.21273/HORTSCI15134-20)
Nguyen GN, Maharjan P, Maphosa L, Vakani J, Thoday-Kennedy E, Kant S (2019) A robust automated image-based phenotyping method for rapid vegetative screening of wheat germplasm for nitrogen use efficiency. Front Plant Sci 10:1372. https://doi.org/10.3389/fpls.2019.01372.
Ohama N, Sato H, Shinozaki K, Yamaguchi-Shinozaki K (2017) Transcriptional regulatory network of plant heat stress response. Trends Plant Sci 22:53–65.
Ozturk M, Turkyilmaz Unal B, García-Caparrós P et al (2021) Osmoregulation and its actions during the drought stress in plants. Physiol Plant 172:1321–1335. https://doi.org/10.1111/ppl.13297. (PMID: 10.1111/ppl.13297)
Parmar N, Singh KH, Sharma D et al (2017) Genetic engineering strategies for biotic and abiotic stress tolerance and quality enhancement in horticultural crops: a comprehensive review. 3 Biotech 7:1–35.
Parrotta L, Aloisi I, Faleri C et al (2020) Chronic heat stress affects the photosynthetic apparatus of Solanum lycopersicum L. cv Micro-Tom. Plant Physiol Biochem 154:463–475. https://doi.org/10.1016/j.plaphy.2020.06.047. (PMID: 10.1016/j.plaphy.2020.06.047)
Pattnaik D, Dash D, Mishra A et al (2021) Emerging roles of osmoprotectants in alleviating abiotic stress response under changing climatic conditions. Clim Impacts Sustain Nat Resour Manag 303–324. https://doi.org/10.1002/9781119793403.CH15.
Paupière MJ, Tikunov Y, Schleiff E, et al (2020) Reprogramming of tomato leaf metabolome by the activity of heat stress transcription factor HsfB1. Front Plant Sci 11. https://doi.org/10.3389/fpls.2020.610599.
Piñero MC, Otálora G, Collado J et al (2021) Foliar application of putrescine before a short-term heat stress improves the quality of melon fruits (Cucumis melo L.). J Sci Food Agric 101:1428–1435. https://doi.org/10.1002/jsfa.10756. (PMID: 10.1002/jsfa.10756)
Puchta H (2017) Applying CRISPR/Cas for genome engineering in plants: the best is yet to come. Curr Opin Plant Biol 36:1–8.
Qamer Z, Chaudhary MT, Du X et al (2021) Review of oxidative stress and antioxidative defense mechanisms in Gossypium hirsutum L. in response to extreme abiotic conditions. J Cotton Res 4(1):1–9. https://doi.org/10.1186/s42397-021-00086-4.
Qi J, Song CP, Wang B et al (2018) Reactive oxygen species signaling and stomatal movement in plant responses to drought stress and pathogen attack. J Integr Plant Biol 60:805–826.
Radovich TJK (2018) Biology and classification of vegetables. In: Siddiq M, Uebersax MA (eds.). Handbook of vegetables and vegetable processing: Second edition. Wiley, USA. pp 1–23. https://doi.org/10.1002/9781119098935.ch1.
Raja V, Qadir SU, Alyemeni MN, Ahmad P (2020) Impact of drought and heat stress individually and in combination on physio-biochemical parameters, antioxidant responses, and gene expression in Solanum lycopersicum. 3 Biotech 10. https://doi.org/10.1007/s13205-020-02206-4.
Raza A (2022) Metabolomics: a systems biology approach for enhancing heat stress tolerance in plants. Plant Cell Rep 41:741–763.  https://doi.org/10.1007/s00299-020-02635-8.
Raza A, Su W, Hussain MA et al (2021a) Integrated analysis of metabolome and transcriptome reveals insights for cold tolerance in rapeseed (Brassica napus L.). Front Plant Sci 12. https://doi.org/10.3389/fpls.2021.721681.
Raza A, Tabassum J, Kudapa H, Varshney RK (2021b) Can omics deliver temperature resilient ready-to-grow crops? Crit Rev Biotechnol 41:1209–1232.
Raza A, Wei S, Ang G et al (2021c) Catalase (Cat) gene family in rapeseed (Brassica napus L.): Genome‐wide analysis, identification and expression pattern in response to multiple hormones and abiotic stress conditions. Int J Mol Sci 22. https://doi.org/10.3390/ijms22084281.
Raza A, Charagh S, García-Caparrós P, Rahman MA, Ogwugwa VH, Saeed F, Jin W (2022a) Melatonin-mediated temperature stress tolerance in plants. GM Crops Food 13(1):196–217. https://doi.org/10.1080/21645698.2022.2106111. (PMID: 10.1080/21645698.2022.2106111)
Raza A, Tabassum J, Fakhar AZ, Sharif R, Chen H, Zhang C, Ju L, Fotopoulos V, Siddique KH, Singh RK, Zhuang W, Varshney RK (2022b) Smart reprograming of plants against salinity stress using modern biotechnological tools. Crit Rev Biotechnol 12:1–28. https://doi.org/10.1080/07388551.2022.2093695. (PMID: 10.1080/07388551.2022.2093695)
Raza A, Mubarik MS, Sharif R, Habib M, Jabeen W, Zhang C, Chen H, Chen ZH, Siddique KH, Zhuang W, Varshney RK (2022c) Developing drought-smart, ready-to-grow future crops. The Plant Genome 10:e20279. https://doi.org/10.1002/tpg2.20279. (PMID: 10.1002/tpg2.20279)
Raza A, Salehi H, Rahman MA, Zahid Z, Madadkar Haghjou M, Najafi-Kakavand S, Charagh S, Osman HS, Albaqami M, Zhuang Y, Siddique KHM, Zhuang W (2022d) Plant hormones and neurotransmitter interactions mediate antioxidant defenses under induced oxidative stress in plants. Front Plant Sci 13:961872. https://doi.org/10.3389/fpls.2022.961872. (PMID: 10.3389/fpls.2022.961872)
Ricroch A (2019) Global developments of genome editing in agriculture. Transgenic Res 282(28):45–52. https://doi.org/10.1007/S11248-019-00133-6. (PMID: 10.1007/S11248-019-00133-6)
del Río LA, Corpas FJ, López-Huertas E, Palma JM (2018) Plant superoxide dismutases: function under abiotic stress conditions. In: Gupta D, Palma J. Corpas F (eds). Antioxidants and antioxidant enzymes in higher plants. Springer, Cham. pp 1–26. https://doi.org/10.1007/978-3-319-75088-0_1.
Rodriguez-Ortega WM, Martinez V, Rivero RM et al (2017) Use of a smart irrigation system to study the effects of irrigation management on the agronomic and physiological responses of tomato plants grown under different temperatures regimes. Agric Water Manag 183:158–168. https://doi.org/10.1016/j.agwat.2016.07.014. (PMID: 10.1016/j.agwat.2016.07.014)
Roeber VM, Bajaj I, Rohde M et al (2021) Light acts as a stressor and influences abiotic and biotic stress responses in plants. Plant Cell Environ 44:645–664.
Rurek M, Czołpińska M, Pawłowski TA et al (2018) Cold and heat stress diversely alter both cauliflower respiration and distinct mitochondrial proteins including OXPHOS components and matrix enzymes. Int J Mol Sci 19. https://doi.org/10.3390/ijms19030877.
Rykaczewska K (2015) The effect of high temperature occurring in subsequent stages of plant development on potato yield and tuber physiological Defects. Am J Potato Res 92:339–349. https://doi.org/10.1007/s12230-015-9436-x. (PMID: 10.1007/s12230-015-9436-x)
Saeed F, Hashmi MH, Hossain MJ, et al (2020) Transgenic technologies for efficient insect pest management in crop plants. In: Kiran U, Kamaluddin (eds.), Transgenic technology based value addition plant biotechnology. Elsevier, Academic Press, USA. pp 123–156. https://doi.org/10.1016/B978-0-12-818632-9.00006-X.
Safdar H, Amin A, Shafiq Y et al (2019) A review: Impact of salinity on plant growth. Nat Sci 17:34–40. https://doi.org/10.7537/marsnsj170119.06. (PMID: 10.7537/marsnsj170119.06)
Sakhonwasee S, Phingkasan W (2017) Effects of the foliar application of calcium on photosynthesis, reactive oxygen species production, and changes in water relations in tomato seedlings under heat stress. Horti Environ Biotech 58(2):119–126.
Saleem M, Fariduddin Q, Janda T (2021) Multifaceted role of salicylic acid in combating cold stress in plants: a review. J Plant Growth Regul 40:464–485.
Sanches AG, Pedrosa VMD, Checchio MV et al (2021) Polyols can alleviate chilling injury in ‘Palmer’ mangoes during cold storage. Food Control 129. https://doi.org/10.1016/j.foodcont.2021.108248.
Şanlı BA, Öztürk Gökçe ZN (2021) Investigating effect of miR160 through overexpression in potato cultivars under single or combination of heat and drought stresses. Plant Biotechnol Rep 15:335–348. https://doi.org/10.1007/s11816-021-00677-2. (PMID: 10.1007/s11816-021-00677-2)
Scheelbeek PFD, Bird FA, Tuomisto HL et al (2018) Effect of environmental changes on vegetable and legume yields and nutritional quality. Proc Natl Acad Sci U S A 115:6804–6809. https://doi.org/10.1073/pnas.1800442115. (PMID: 10.1073/pnas.1800442115)
Shahid MA, Balal RM, Pervez MA et al (2014) Exogenous proline and proline-enriched Lolium perenne leaf extract protects against phytotoxic effects of nickel and salinity in Pisum sativum by altering polyamine metabolism in leaves. Turk J Botany 38:914–926. https://doi.org/10.3906/bot-1312-13. (PMID: 10.3906/bot-1312-13)
Shahzad A, Ullah S, Dar AA et al (2021) Nexus on climate change: agriculture and possible solution to cope future climate change stresses. Environ Sci Pollut Res 28:14211–14232.
Shao CG, Wang H, Yu-Fen BI (2015) Relationship between endogenous polyamines and tolerance in Medicago sativa L.under heat stress. Acta Agrestia Sin 23:1214–1219.
Sharma L, Priya M, Bindumadhava H (2016) Influence of high temperature stress on growth, phenology and yield performance of mungbean [Vigna radiata (L.) Wilczek] under managed growth conditions. Sci Hortic 213:379–391. https://doi.org/10.1016/j.scienta.2016.10.033. (PMID: 10.1016/j.scienta.2016.10.033)
Sharma A, Shahzad B, Kumar V et al (2019) Phytohormones regulate accumulation of osmolytes under abiotic stress. Biomolecules 9:285.
Sharma A, Kumar V, Shahzad B et al (2020) Photosynthetic Response of Plants Under Different Abiotic Stresses: A Review. J Plant Growth Regul 39:509–531.
Sharma M, Irfan M, Kumar A et al (2021) Recent insights into plant circadian clock response against abiotic stress. J Plant Growth Regul. https://doi.org/10.1007/S00344-021-10531-Y. (PMID: 10.1007/S00344-021-10531-Y)
Siddiqui SA, Kumari A, Rathore MS (2021) Glycine betaine as a major osmolyte under abiotic stress in halophytes. In: Grigore MN (eds) Handbook halophytes. Springer, Cham. pp 2069–2087. https://doi.org/10.1007/978-3-030-57635-6_118.
Singh J, Thakur JK (2018) Photosynthesis and abiotic stress in plants. In: Vats, S. (eds) Biotic and Abiotic Stress Tolerance in Plants. Springer, Singapore. pp 27-46. https://doi.org/10.1007/978-981-10-9029-5_2 .
Singh K, Chandra A (2021) DREBs-potential transcription factors involve in combating abiotic stress tolerance in plants. Biologia 76:3043–3055.
Song Y, Diao Q, Qi H (2014) Putrescine enhances chilling tolerance of tomato (Lycopersicon esculentum Mill.) through modulating antioxidant systems. Acta Physiol Plant 36:3013–3027. https://doi.org/10.1007/s11738-014-1672-z. (PMID: 10.1007/s11738-014-1672-z)
Song H, Huang Y, Gu B (2020) QTL-Seq identifies quantitative trait loci of relative electrical conductivity associated with heat tolerance in bottle gourd (Lagenaria siceraria). PLoS One 15. https://doi.org/10.1371/journal.pone.0227663.
Su W, Raza A, Gao A, et al (2021) Genome-wide analysis and expression profile of superoxide dismutase (SOD) gene family in rapeseed (Brassica napus L.) under different hormones and abiotic stress conditions. Antioxidants 10. https://doi.org/10.3390/antiox10081182.
Sun X, Zhu J, Li X et al (2020) AsHSP26.8a, a creeping bentgrass small heat shock protein integrates different signaling pathways to modulate plant abiotic stress response. BMC Plant Biol 20. https://doi.org/10.1186/s12870-020-02369-5.
Tang R, Zhu W, Song X, et al (2016) Genome-wide identification and function analyses of heat shock transcription factors in potato. Front Plant Sci 7. https://doi.org/10.3389/fpls.2016.00490.
Todorova D, Katerova Z, Alexieva V, Sergiev I (2015) Polyamines–possibilities for application to increase plant tolerance and adaptation capacity to stress. Genet Plant Physiol 5:123–144.
van Aken O (2021) Mitochondrial redox systems as central hubs in plant metabolism and signaling. Plant Physiol 186:36–52.
Varshney RK, Pandey MK, Bohra A, Singh VK, Thudi M, Saxena RK (2019) Toward the sequence-based breeding in legumes in the post-genome sequencing era. Theor Appl Genet 132(3):797–816. https://doi.org/10.1007/s00122-018-3252-x.
Varshney RK, Terauchi R, McCouch SR (2014) Harvesting the promising fruits of genomics: applying genome sequencing technologies to crop breeding. PLoS Biol 12:1–8. https://doi.org/10.1371/journal.pbio.1001883. (PMID: 10.1371/journal.pbio.1001883)
Varshney RK, Sinha P, Singh VK, Kumar A, Zhang Q, Bennetzen JL (2020) 5Gs for crop genetic improvement. Curr Opin Plant Biol 56:190–196. https://doi.org/10.1016/j.pbi.2019.12.004. (PMID: 10.1016/j.pbi.2019.12.004)
Varshney RK, Bohra A, Yu J, Graner A, Zhang Q, Sorrells ME (2021a) Designing future crops: genomics-assisted breeding comes of age. Trends Plant Sci 26(6):631–649. https://doi.org/10.1016/j.tplants.2021.03.010. (PMID: 10.1016/j.tplants.2021.03.010)
Varshney RK, Bohra A, Roorkiwal M, Barmukh R, Cowling WA, Chitikineni A, Lam HM, Hickey LT, Croser JS, Bayer PE, Edwards D et al (2021b). Fast-forward breeding for a food-secure world. Trends Genet 37(12):1124–36. https://doi.org/10.1016/j.tig.2021.08.002.
Verma G, Srivastava D, Tiwari P, Chakrabarty D (2019) ROS modulation in crop plants under drought stress. In: Hasanuzzaman M, Fotopoulos V, Nahar K, Fujita M (eds.). Reactive oxygen, nitrogen and sulfur species in plants: production, metabolism, signaling and defense mechanisms. John Wiley & Sons, Ltd, UK. pp 311–336. https://doi.org/10.1002/9781119468677.ch13.
Vu LD, Gevaert K, De Smet I (2019) Feeling the Heat: Searching for Plant Thermosensors. Trends Plant Sci 24:210–219.
Wang R, Mei Y, Xu L et al (2018) Differential proteomic analysis reveals sequential heat stress-responsive regulatory network in radish (Raphanus sativus L.) taproot. Planta 247:1109–1122. https://doi.org/10.1007/s00425-018-2846-5. (PMID: 10.1007/s00425-018-2846-5)
Wang L, Zhou H, Guo S et al (2018a) Exogenous spermidine maintains the chloroplast structure of cucumber seedlings and inhibits the degradation of photosynthetic protein complexes under high-temperature stress. Acta Physiol Plant 40. https://doi.org/10.1007/s11738-018-2624-9.
Wang J, Lv J, Liu Z et al (2019a) Integration of transcriptomics and metabolomics for pepper (Capsicum annuum L.) in response to heat stress. Int J Mol Sci 20. https://doi.org/10.3390/ijms20205042.
Wang L, Ma H, Lin J (2019b) Angiosperm-wide and family-level analyses of Ap2/Erf genes reveal differential retention and sequence divergence after whole-genome duplication. Front Plant Sci 10. https://doi.org/10.3389/fpls.2019.00196.
Wang M, Jiang B, Liu W et al (2019c) Transcriptome analyses provide novel insights into heat stress responses in chieh-qua (Benincasa hispida cogn. var. chieh-qua how). Int J Mol Sci 20. https://doi.org/10.3390/ijms20040883.
Wang J, Hu H, Wang W et al (2020) Genome-wide identification and functional characterization of the heat shock factor family in eggplant (Solanum melongena L.) under abiotic stress conditions. Plants 9. https://doi.org/10.3390/plants9070915.
Wang F, Yin Y, Yu C et al (2021a) Transcriptomics analysis of heat stress-induced genes in pepper (Capsicum annuum L.) seedlings. Horticulturae 7. https://doi.org/10.3390/horticulturae7100339.
Wang J, Liang C, Yang S et al (2021b) iTRAQ-based quantitative proteomic analysis of heat stress-induced mechanisms in pepper seedlings. PeerJ 9. https://doi.org/10.7717/peerj.11509.
Wei S, Yang X, Huo G et al (2020) Distinct metabolome changes during seed germination of lettuce (Lactuca sativa L.) in response to thermal stress as revealed by untargeted metabolomics analysis. Int J Mol Sci 21. https://doi.org/10.3390/ijms21041481.
Wen J, Jiang F, Weng Y et al (2019) Identification of heat-tolerance QTLs and high-temperature stress-responsive genes through conventional QTL mapping, QTL-seq and RNA-seq in tomato. BMC Plant Biol 19. https://doi.org/10.1186/s12870-019-2008-3.
Xi Y, Han X, Zhang Z et al (2020) Exogenous phosphite application alleviates the adverse effects of heat stress and improves thermotolerance of potato (Solanum tuberosum L.) seedlings. Ecotoxicology and environ. Safety 190:110048.
Xu Y, Yuan Y, Du N, et al (2018) Proteomic analysis of heat stress resistance of cucumber leaves when grafted onto Momordica rootstock. Hortic Res 5. https://doi.org/10.1038/s41438-018-0060-z.
Yalçin M, Öztürk Gökçe ZN (2021) Investigation of the effects of overexpression of novel_105 mirna in contrasting potato cultivars during separate and combined drought and heat stresses. Turk J Botany 45:397–411. https://doi.org/10.3906/bot-2103-39. (PMID: 10.3906/bot-2103-39)
Yang Z, Li W, Su X et al (2019) Early response of radish to heat stress by strand-specific transcriptome and mirna analysis. Int J Mol Sci 20. https://doi.org/10.3390/ijms20133321.
Yang X, Han Y, Hao J et al (2022) Exogenous spermidine enhances the photosynthesis and ultrastructure of lettuce seedlings under high-temperature stress. Sci Hortic 291. https://doi.org/10.1016/j.scienta.2021.110570.
Yaqoob H, Tariq A, Bhat BA, Bhat KA, Nehvi IB, Raza A, Djalovic I, Prasad PV, Mir RA (2023) Integrating genomics and genome editing for orphan crop improvement: a bridge between orphan crops and modern agriculture system. GM Crops & Food 14(1):1–20.  https://doi.org/10.1080/21645698.2022.2146952.
Yin Y, Qin K, Song X et al (2018) BZR1 transcription factor regulates heat stress tolerance through FERONIA receptor-like kinase-mediated reactive oxygen species signaling in tomato. m 59:2239–2254. https://doi.org/10.1093/pcp/pcy146.
Yu W, Wang L, Zhao R et al (2019) Knockout of SlMAPK3 enhances tolerance to heat stress involving ROS homeostasis in tomato plants. BMC Plant Biol 19. https://doi.org/10.1186/s12870-019-1939-z.
Yuan L, Wang J, Xie S et al (2019) Comparative proteomics indicates that redox homeostasis is involved in high-and low-temperature stress tolerance in a novel wucai (Brassica campestris L.) genotype. Int J Mol Sci 20. https://doi.org/10.3390/ijms20153760.
Yue L, Li G, Dai Y et al (2021) Gene co-expression network analysis of the heat-responsive core transcriptome identifies hub genes in Brassica rapa. Planta 253. https://doi.org/10.1007/s00425-021-03630-3.
Zahra N, Shaukat K, Hafeez MB et al (2021) Physiological and molecular responses to high, chilling, and freezing temperature in plant growth and production: consequences and mitigation possibilities. In: Husen A. (eds), Harsh Environment and Plant Resilience. Springer, Cham pp:235–290. https://doi.org/10.1007/978-3-030-65912-7_10.
Zaidi SSeA, Mukhtar MS, Mansoor S (2018) Genome editing: targeting susceptibility genes for plant disease resistance. Trends Biotechnol 36:898–906.
Zhang S, Zhang A, Wu X et al (2019) Transcriptome analysis revealed expression of genes related to anthocyanin biosynthesis in eggplant (Solanum melongena L.) under high-temperature stress. BMC Plant Biol 19. https://doi.org/10.1186/s12870-019-1960-2.
Zhang A, Zhu Z, Shang J et al (2020) Transcriptome profiling and gene expression analyses of eggplant (Solanum melongena L.) under heat stress. PLoS One 15. https://doi.org/10.1371/journal.pone.0236980.
Zhao Q, Chen W, Bian J et al (2018) Proteomics and phosphoproteomics of heat stress-responsive mechanisms in spinach. Front Plant Sci 9:800. https://doi.org/10.3389/fpls.2018.00800. (PMID: 10.3389/fpls.2018.00800)
Zhao Q, Chen W, Bian J et al (2018a) Proteomics and phosphoproteomics of heat stress-responsive mechanisms in Spinach. Front Plant Sci 9. https://doi.org/10.3389/fpls.2018.00800.
Zhou R, Kjær KH, Rosenqvist E et al (2017) Physiological response to heat stress during seedling and anthesis stage in tomato genotypes differing in heat tolerance. J Agron Crop Sci 203:68–80. https://doi.org/10.1111/jac.12166. (PMID: 10.1111/jac.12166)
Zulfiqar F, Akram NA, Ashraf M (2020) Osmoprotection in plants under abiotic stresses: new insights into a classical phenomenon. Planta 251(1):1–17. https://doi.org/10.1007/s00425-019-03293-1.
Grant Information:
Tropical Legumes III project: INV008442/OPP1114827 Bill and Melinda Gates Foundation
Contributed Indexing:
Keywords: Abiotic stress; Biotechnology; Climate change; GWAS; Genome editing; Heat stress; QTL mapping
Entry Date(s):
Date Created: 20230124 Date Completed: 20230126 Latest Revision: 20230320
Update Code:
20240105
PubMed Central ID:
PMC9873721
DOI:
10.1007/s10142-023-00967-8
PMID:
36692535
Czasopismo naukowe
Climate change seriously impacts global agriculture, with rising temperatures directly affecting the yield. Vegetables are an essential part of daily human consumption and thus have importance among all agricultural crops. The human population is increasing daily, so there is a need for alternative ways which can be helpful in maximizing the harvestable yield of vegetables. The increase in temperature directly affects the plants' biochemical and molecular processes; having a significant impact on quality and yield. Breeding for climate-resilient crops with good yields takes a long time and lots of breeding efforts. However, with the advent of new omics technologies, such as genomics, transcriptomics, proteomics, and metabolomics, the efficiency and efficacy of unearthing information on pathways associated with high-temperature stress resilience has improved in many of the vegetable crops. Besides omics, the use of genomics-assisted breeding and new breeding approaches such as gene editing and speed breeding allow creation of modern vegetable cultivars that are more resilient to high temperatures. Collectively, these approaches will shorten the time to create and release novel vegetable varieties to meet growing demands for productivity and quality. This review discusses the effects of heat stress on vegetables and highlights recent research with a focus on how omics and genome editing can produce temperature-resilient vegetables more efficiently and faster.
(© 2023. The Author(s).)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies