Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Is the future female for turtles? Climate change and wetland configuration predict sex ratios of a freshwater species.

Tytuł:
Is the future female for turtles? Climate change and wetland configuration predict sex ratios of a freshwater species.
Autorzy:
Roberts HP; Department of Environmental Conservation, University of Massachusetts, Amherst, Massachusetts, USA.
Willey LL; Department of Environmental Studies, Antioch University New England, Keene, New Hampshire, USA.; American Turtle Observatory, New Salem, Massachusetts, USA.
Jones MT; Natural Heritage and Endangered Species Program, Massachusetts Division of Fisheries and Wildlife, Westborough, Massachusetts, USA.
Akre TSB; Smithsonian Conservation Biology Institute, Front Royal, Virginia, USA.
King DI; U.S. Forest Service, Northern Research Station, Department of Environmental Conservation, University of Massachusetts, Amherst, Massachusetts, USA.
Kleopfer J; Virginia Department of Wildlife Resources, Charles City, Virginia, USA.
Brown DJ; U.S. Forest Service, Pacific Northwest Research Station, Amboy, Washington, USA.; School of Natural Resources, West Virginia University, Morgantown, West Virginia, USA.
Buchanan SW; Division of Fish and Wildlife, Rhode Island Department of Environmental Management, West Kingston, Rhode Island, USA.
Chandler HC; The Orianne Society, Tiger, Georgia, USA.; Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, Virginia, USA.
deMaynadier P; Maine Department of Inland Fisheries and Wildlife, Augusta, Maine, USA.
Winters M; New Hampshire Fish and Game Department, Concord, New Hampshire, USA.
Erb L; The Mid-Atlantic Center for Herpetology and Conservation, Oley, Pennsylvania, USA.
Gipe KD; Pennsylvania Fish and Boat Commission, Bellefonte, Pennsylvania, USA.
Johnson G; Biology Department, State University of New York, Potsdam, New York, USA.
Lauer K; Department of Environmental Studies, Antioch University New England, Keene, New Hampshire, USA.; American Turtle Observatory, New Salem, Massachusetts, USA.
Liebgold EB; Department of Biological Sciences, Salisbury University, Salisbury, Maryland, USA.
Mays JD; Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, Gainesville, Florida, USA.
Meck JR; Natural Heritage and Endangered Species Program, Massachusetts Division of Fisheries and Wildlife, Westborough, Massachusetts, USA.; Smithsonian Conservation Biology Institute, Front Royal, Virginia, USA.
Megyesy J; New Hampshire Fish and Game Department, Concord, New Hampshire, USA.
Mota JL; U.S. Forest Service, Pacific Northwest Research Station, Amboy, Washington, USA.
Nazdrowicz NH; Species Conservation and Research Program, Delaware Division of Fish & Wildlife, Delaware, USA.
Oxenrider KJ; West Virginia Division of Natural Resources, Romney, West Virginia, USA.
Parren M; American Turtle Observatory, New Salem, Massachusetts, USA.
Ransom TS; Environmental Studies Department, Salisbury University, Salisbury, Maryland, USA.
Rohrbaugh L; District of Columbia Department of Energy & Environment, Washington, District of Columbia, USA.
Smith S; Maryland Department of Natural Resources, Maryland, Wye Mills, USA.
Yorks D; Maine Department of Inland Fisheries and Wildlife, Augusta, Maine, USA.
Zarate B; New Jersey Division of Fish and Wildlife, Lebanon, New Jersey, USA.
Źródło:
Global change biology [Glob Chang Biol] 2023 May; Vol. 29 (10), pp. 2643-2654. Date of Electronic Publication: 2023 Feb 13.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: : Oxford : Blackwell Pub.
Original Publication: Oxford, UK : Blackwell Science, 1995-
MeSH Terms:
Climate Change*
Turtles*/physiology
Animals ; Female ; Male ; Sex Ratio ; Wetlands ; Fresh Water
References:
Aresco, M. J. (2005). The effect of sex-specific terrestrial movements and roads on the sex ratio of freshwater turtles. Biological Conservation, 123, 37-44.
Barton, K. (2016). MuMIn: Multi-model inference. R package version 1.15.1. http://CRAN.R-project.org/package1/4MuMIn.
Beaudry, F., deMaynadier, P. G., & Hunter, M. L. (2010). Nesting movements and the use of anthropogenic nesting sites by spotted turtles (Clemmys guttata) and Blanding's turtles (Emydoidea blandingii). Herpetological Conservation and Biology, 5, 1-8.
Beever, E. A., O'Leary, J., Mengelt, C., West, J. M., Julius, S., Green, N., Magness, D., Petes, L., Stein, B., Nicotra, A. B., Hellmann, J. J., Robertson, A. L., Staudinger, M. D., Rosenberg, A. A., Babij, E., Brennan, J., Schuurman, G. W., & Hofmann, G. E. (2016). Improving conservation outcomes with a new paradigm for understanding species' fundamental and realized adaptive capacity. Conservation Letters, 9, 131-137.
Bowne, D. R., Cosentino, B. J., Anderson, L. J., Bloch, C. P., Cooke, S., Crumrine, P. W., Dallas, J., Doran, A., Dosch, J. J., Druckenbrod, D. L., Durtsche, R. D., Garneau, D., Genet, K. S., Fredericksen, T. S., Kish, P. A., Kolozsvary, M. B., Kuserk, F. T., Lindquist, E. S., Mankiewicz, C., … Zimmermann, C. R. (2018). Effects of urbanization on the population structure of freshwater turtles across the United States. Conservation Biology, 32, 1150-1161.
Boyle, M., Hone, J., Schwanz, L. E., & Georges, A. (2014). Under what conditions do climate-driven sex ratios enhance versus diminish population persistence? Ecology and Evolution, 4, 4522-4533.
Brooks, M. E., Kristensen, K., van Benthem, K. J., Magnusson, A., Berg, C. W., Nielsen, A., Skaug, H. J., Maechler, M., & Bolker, B. M. (2017). glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. The R Journal, 9, 378-400.
Buchanan, S. W. (2017). The influence of altered habitat: Landscape ecology of freshwater turtles in Rhode Island. [Dissertation]. University of Rhode Island. https://digitalcommons.uri.edu/oa_diss/665.
Bull, J. J., Vogt, R. C., & McCoy, C. J. (1982). Sex determining temperatures in turtles: A geographic comparison. Evolution, 36, 326-332.
Burnham, K. P., & Anderson, D. R. (2002). Model selection and multimodel inference: A practical information theoretic approach. Springer.
Carstairs, S., Dupuis-Desormeaux, M., & Davy, C. M. (2018). Revisiting the hypothesis of sex-biased turtle road mortality. Canadian Field-Naturalist, 132, 289-295. https://doi.org/10.22621/cfn.v132i3.1908.
Carter, A. L., & Janzen, F. J. (2021). Predicting the effects of climate change on incubation in reptiles: Methodological advances and new directions. Journal of Experimental Biology, 224, jeb236018. https://doi.org/10.1242/jeb.236018.
Chandler, H. C., Stegenga, B. S., & Mays, J. D. (2022). Compensating for small body size: The reproductive ecology of southern spotted turtle (Clemmys guttata) populations. Ichthyology and Herpetology, 110, 268-277.
Chandler, H. C., Stegenga, B. S., & Stevenson, D. J. (2019). Movement and space use in southern populations of spotted turtles (Clemmys guttata). Southeastern Naturalist, 18, 602-618.
Chandler, H. C., Stevenson, D. J., Mays, J. D., Stegenga, B. S., Vaigneur, W. H., & Moore, M. D. (2017). A new trap design for catching small Emydid and Kinosternid turtles. Herpetological Review, 48, 323-327.
Chandler, R. B., King, D. I., & Chandler, C. C. (2009). Effects of management regime on the abundance and nest survival of shrubland birds in wildlife openings in northern New England, USA. Forest Ecology and Management, 258, 1669-1676.
Coulston, J. W., Moisen, G. G., Wilson, B. T., Finco, M. V., Cohen, W. B., & Brewer, C. K. (2016). Brewer modeling percent tree canopy cover-A pilot study. Photogrammetric Engineering and Remote Sensing, 78, 715-727.
Doody, J. S., Georges, A., & Young, J. E. (2004). Determinants of reproductive success and offspring sex in a turtle with environmental sex determination. Biological Journal of the Linnean Society, 81, 1-16. https://doi.org/10.1111/j.1095-8312.2004.00250.x.
Dorland, A., Rytwinski, T., & Fahrig, L. (2014). Do roads reduce painted turtle (Chrysemys picta) populations? PLoS One, 9, e98414.
Ernst, C. H. (1970). Reproduction in Clemmys guttata. Herpetologica, 26, 228-232.
Ernst, C. H., Hershey, M. F., & Barbour, R. W. (1974). A new coding system for hard-shelled turtles. Kentucky Academy of Science, 35, 27-28.
Ernst, C. H., & Lovich, J. E. (2009). Turtles of the United States and Canada. Smithsonian Institution Press.
Escobedo-Galvan, A. H., Gonzalez-Salazar, C., Lopez-Alcaide, S., Arroyo-Pena, V. B., & Martinez-Meyer, E. (2011). Will all species with temperature-dependent sex determination respond the same way to climate change? A reply to Kallimanis (2010). Oikos, 120, 795-799.
Ewert, M. A., Etchberger, C. R., & Nelson, C. E. (2004). Turtle sex-determining modes and TSD patterns, and some TSD pattern correlates. In N. Valenzuela & V. A. Lance (Eds.), Temperature-dependent sex determination in vertebrates. Smithsonian Institution.
Ewert, M. A., Lang, J. W., & Nelson, C. E. (2005). Geographic variation in the pattern of temperature-dependent sex determination in the American snapping turtle (Chelydra serpentina). Journal of Zoology, 265, 81-95.
Freedberg, S., Lee, C., & Pappas, M. (2011). Agricultural practices alter sex ratios in a reptile with environmental sex determination. Biological Conservation, 144, 1159-1166.
Gibbons, J. W., & Lovich, J. E. (2019). Where has turtle ecology been, and where is it going? Herpetologica, 75, 4-20.
Gibbs, J. P., & Shriver, W. G. (2002). Estimating the effects of road mortality on turtle populations. Conservation Biology, 16, 1647-1652.
Gibbs, J. P., & Steen, D. A. (2005). Trends in sex ratios of turtles in the United States: Implications of road mortality. Conservation Biology, 19, 552-556.
Hamer, A. J., Harrison, L. J., & Stokeld, D. (2016). Road density and wetland context alter population structure of a freshwater turtle. Austral Ecology, 41, 53-64.
Hawkes, L. A., Broderick, A. C., Godfrey, M. H., & Godley, B. J. (2007). Investigating the potential impacts of climate change on a marine turtle population. Global Change Biology, 13, 923-932.
Hays, G. C., Mazaris, A. D., Schofield, G., & Laloe, J.-O. (2017). Population viability at extreme sex-ratio skews produced by temperature-dependent sex determination. Proceedings of the Royal Society B: Biological Sciences, 284, 20162576. https://doi.org/10.1098/rspb.2016.2576.
Hijmans, R. J. (2019). Raster: Geographic data analysis and modeling. R package version 3.0-7.
Ihlow, F., Dambach, J., Engler, J. O., Flecks, M., Hartmann, T., Nekum, S., Rajaei, H., & Rödder, D. (2012). On the brink of extinction? How climate change may affect global chelonian species richness and distribution. Global Change Biology, 18, 1520-1530.
Janzen, F. J. (1994a). Climate change and temperature-dependent sex determination in reptiles. Proceedings of the National Academy of Sciences of the United States of America, 91, 7487-7490.
Janzen, F. J. (1994b). Vegetational cover predicts the sex ratio of hatchling turtles in natural nests. Ecology, 75, 1593-1599.
Janzen, F. J., Hoekstra, L. A., Brooks, R. J., Carroll, D. M., Gibbons, J. W., Greene, J. L., Iverson, J. B., Litzgus, J. D., Michael, E. D., Parren, S. G., Roosenburg, W. M., Strain, G. F., Tucker, J. K., & Ultsch, G. R. (2018). Altered spring phenology of north American freshwater turtles and the importance of representative populations. Ecology and Evolution, 8, 5815-5827.
Jensen, M. P., Allen, C. D., Eguchi, T., Bell, I. P., LaCasella, E. L., Hilton, W. A., Hof, C. A. M., & Dutton, P. H. (2018). Environmental warming and feminization of one of the largest sea turtle populations in the world. Current Biology, 28, 154-159.
Jin, S., Homer, C. G., Yang, L., Danielson, P., Dewitz, J., Li, C., Zhu, Z., Xian, G., & Howard, D. (2019). Overall methodology design for the United States National Land Cover Database 2016 products. Remote Sensing, 11, 2971. https://doi.org/10.3390/rs11242971.
Joyal, L. A., McCollough, M., & Hunter, M. L., Jr. (2001). Landscape ecology approaches to wetland species conservation: A case study of two turtle species in southern Maine. Conservation Biology, 15, 1755-1762.
Litzgus, J. D. (2006). Sex differences in the spotted turtle (Clemmys guttata). Copeia, 2006, 281-288.
Litzgus, J. D., & Brooks, R. J. (1998). Reproduction in a northern population of Clemmys guttata. Journal of Herpetology, 32, 252-259.
Litzgus, J. D., & Mousseau, T. A. (2004). Home range and seasonal activity of southern spotted turtles (Clemmys guttata): Implications for management. Copeia, 2004, 804-817.
Litzgus, J. D., & Mousseau, T. A. (2006). Geographic variation in reproduction in a freshwater turtle (Clemmys guttata). Herpetologica, 62, 132-140.
Marchand, M. N., & Litvaitis, J. A. (2004). Effects of habitat features and landscape composition on the population structure of a common aquatic turtle in a region undergoing rapid development. Conservation Biology, 18, 758-767.
McGarigal, K., Cushman, S. A., & Ene, E. (2012). FRAGSTATS v4: Spatial pattern analysis program for categorical and continuous maps. Computer software program produced by the authors at the University of Massachusetts, Amherst. http://www.umass.edu/landeco/research/fragstats/fragstats.html.
Milam, J. C., & Melvin, S. M. (2001). Density, habitat use, movements, and conservation of spotted turtles (Clemmys guttata) in Massachusetts. Journal of Herpetology, 35, 418-427.
Mitchell, T. S., Maciel, J. A., & Janzen, F. J. (2013). Does sex-ratio selection influence nest-site choice in a reptile with temperature dependent sex determination? Proceedings of the Royal Society B: Biological Sciences, 280, 20132460. https://doi.org/10.1098/rspb.2013.
Morjan, C. L. (2003). Variation in nesting patterns affecting nest temperatures in two populations of painted turtles (Chrysemys picta) with temperature-dependent sex determination. Behavioral Ecology and Sociobiology, 53, 254-261. https://doi.org/10.1007/s00265-002-0570-3.
Mui, A. B., Edge, C. B., Paterson, J. E., Caverhill, B., Johnson, B., Litzgus, J. D., & He, Y. (2016). Nesting sites in agricultural landscapes are a potential sink for turtle populations. Canadian Journal of Zoology, 94, 61-67. https://doi.org/10.1139/cjz-2015-0154.
Neel, M. C., McGarigal, K., & Cushman, S. A. (2004). Behavior of class-level landscape metrics across gradients of class aggregation and area. Landscape Ecology, 19, 435-455.
O'Bryan, C. J. (2014). Persistence of a vulnerable semi-aquatic turtle in an intensively-managed forest landscape [Masters thesis]. Clemson University.
O'Bryan, C. J., Homyack, J. A., Baldwin, R. F., Kanno, Y., & Harrison, A.-L. (2016). Novel habitat use supports population maintenance in a reconfigured landscape. Ecosphere, 7, e01228.
Patricio, A. R., Varela, M. R., Barbosa, C., Broderick, A. C., Catry, P., Hawkes, L. A., Regalla, A., & Godley, B. J. (2019). Climate change resilience of a globally important sea turtle nesting population. Global Change Biology, 25, 522-535.
Patrick, D. A., & Gibbs, J. P. (2010). Population structure and movements of freshwater turtles across a road-density gradient. Landscape Ecology, 25, 791-801.
Prange, S., Gehrt, S. D., & Wigger, E. P. (2004). Influences of anthropogenic resources on raccoon (Procyon lotor) movements and spatial distribution. Journal of Mammalogy, 85, 483-490.
PRISM Climate Group. (2021). Oregon State University. Retrieved April 2021 from https://prism.oregonstate.edu.
R Development Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing.
Rasmussen, M. L., & Litzgus, J. D. (2010). Patterns of maternal investment in spotted turtles (Clemmys guttata): Implications of trade-offs, scales of analyses, and incubation substrates. Ecoscience, 17, 47-58.
Refsnider, J. M., Bodensteiner, B. L., Reneker, J. L., & Janzen, F. J. (2013). Nest depth may not compensate for sex ratio skews caused by climate change in turtles. Animal Conservation, 16, 481-490.
Refsnider, J. M., & Janzen, F. J. (2012). Behavioural plasticity may compensate for climate change in a long-lived reptile with temperature-dependent sex determination. Biological Conservation, 152, 90-95.
Refsnider, J. M., & Janzen, F. J. (2016). Temperature-dependent sex determination under rapid anthropogenic environmental change: Evolution at a turtle's pace? Journal of Heredity, 2016, 61-70. https://doi.org/10.1093/jhered/esv053.
Refsnider, J. M., Milne-Zelman, C., Warner, D. A., & Janzen, F. J. (2014). Population sex ratios under differing local climates in a reptile with environmental sex determination. Evolutionary Ecology, 28, 977-989.
Reid, B. N., & Peery, M. Z. (2014). Land use patterns skew sex ratios, decrease genetic diversity and trump the effects of recent climate change in an endangered turtle. Diversity and Distributions, 20, 1425-1437.
Reneker, J. L., & Kamel, S. J. (2016). Climate change increases the production of female hatchlings at northern sea turtle rookery. Ecology, 97, 3257-3264.
Roberts, H. P., Jones, M. T., Willey, L. L., Akre, T. S. B., Sievert, P. R., deMaynadier, P., Gipe, K. D., Johnson, G., Kleopfer, J., Marchand, M., Megyesy, J., Parren, S., Thompson, E., Urban, C., Yorks, D., Zarate, B., Erb, L., Ross, A. M., Dragon, J., … Lassiter, E. (2021). Large-scale collaboration reveals landscape-level effects of land-use on turtle demography. Global Ecology and Conservation, 30, e01759.
Roe, J., Rees, M., & Georges, A. (2011). Suburbs: Dangers or drought refugia for freshwater turtle populations? Journal of Wildlife Management, 75, 1544-1552.
Schwanz, L. E., Spencer, R.-J., Bowden, R. M., & Janzen, F. J. (2010). Climate and predation dominate juvenile adult recruitment in a turtle with temperature-dependent sex determination. Ecology, 91, 3016-3026.
Selwood, K. E., McGeoch, M. A., & Mac Nally, R. (2015). The effects of climate change and land-use change on demographic rates and population viability. Biological Reviews, 90, 837-853.
Smetzer, J. R., King, D. I., & Schlossberg, S. (2014). Management regime influences shrubland birds and habitat conditions in the northern Appalachians, USA. Journal of Wildlife Management, 78, 314-324.
Stanford, C. B., Iverson, J. B., Rhodin, A. G. J., Paul van Dijk, P., Mittermeier, R. A., Kuchling, G., Berry, K. H., Bertolero, A., Bjorndal, K. A., Blanck, T. E. G., Buhlmann, K. A., Burke, R. L., Congdon, J. D., Diagne, T., Edwards, T., Eisemberg, C. C., Ennen, J. R., Forero-Medina, G., Frankel, M., … Walde, A. D. (2020). Turtles and tortoises are in trouble. Current Biology, 30, R721-R735.
Steen, D. A., Aresco, M. J., Beilke, S. G., Compton, B. W., Condon, E. P., Kenneth Dodd, C., Forrester, H., Gibbons, J. W., Greene, J. L., Johnson, G., Langen, T. A., Oldham, M. J., Oxier, D. N., Saumure, R. A., Schueler, F. W., Sleeman, J. M., Smith, L. L., Tucker, J. K., & Gibbs, J. P. (2006). Relative vulnerability of female turtles to road mortality. Animal Conservation, 9, 1367-9430.
Steen, D. A., & Gibbs, J. P. (2004). Effects of roads on the structure of freshwater turtle populations. Conservation Biology, 18, 1143-1148.
Steen, D. A., Gibbs, J. P., Buhlmann, K. A., Carr, J. L., Compton, B. W., Congdon, J. D., Doody, J. S., Godwin, J. C., Holcomb, K. L., Jackson, D. R., Janzen, F. J., Johnson, G., Jones, M. T., Lamer, J. T., Langen, T. A., Plummer, M. V., Rowe, J. W., Saumure, R. A., Tucker, J. K., & Wilson, D. S. (2012). Terrestrial requirements of nesting freshwater turtles. Biological Conservation, 150, 121-128.
Sung, Y., & Fong, J. J. (2018). Assessing consumer trends and illegal activity by monitoring the online wildlife trade. Biological Conservation, 227, 219-225.
Telemeco, R. S., Elphick, M. J., & Shine, R. (2009). Nesting lizards (Bassiana duperreyi) compensate partly, but not completely, for climate change. Ecology, 90, 17-22.
Thompson, M., Coe, B. H., Andrews, R. M., Cristol, D. A., Crossley, D. A., II, & Hopkins, W. A. (2018). Agricultural land use creates evolutionary traps for nesting turtles and is exacerbated by mercury pollution. Journal of Experimental Zoology, 329, 230-243.
Thompson, M. M., Coe, B. H., Andrews, R. M., Stauffer, D. F., Cristol, D. A., Crossley, D. A., & Hopkins, W. A. (2018). Major global changes interact to cause male-biased sex ratios in a reptile with temperature-dependent sex determination. Biological Conservation, 222, 64-74.
Tomillo, P. S., Genovart, M., Paladino, F. V., Spotila, J. R., & Oro, D. (2015). Climate change overruns resilience conferred by temperature-dependent sex determination in sea turtles and threatens their survival. Global Change Biology, 21, 2980-2988. https://doi.org/10.1111/gcb.12918.
Tucker, J. K., Dolan, C. R., Lamer, J. T., & Dustman, E. A. (2008). Climatic warming, sex ratios, and red-eared sliders (Trachemys scripta elegans) in Illinois. Chelonian Conservation and Biology, 7, 60-69.
Valenzuela, N., Literman, R., Neuwald, J. L., Mizoguchi, B., Iverson, J. B., Riley, J., & Litzgus, J. D. (2019). Extreme thermal fluctuations from climate change unexpectedly accelerate demographic collapse of vertebrates with temperature-dependent sex determination. Scientific Reports, 9, 4254. https://doi.org/10.1038/s41598-019-40597-4.
Weishampel, J. F., Bagley, D. A., & Ehrhart, L. M. (2008). Earlier nesting by loggerhead sea turtles following sea surface warming. Global Change Biology, 10, 1424-1427. https://doi.org/10.1111/j.1365-2486.2004.00817.x.
Willey, L. L., Jones, M. T., Sievert, P. R., Akre, T. S. B., Marchand, M., deMaynadier, P., Yorks, D., Mays, J., Dragon, J., Erb, L., Zarate, B., Kleopfer, J. D., Gipe, K. D., Parren, S., Andrews, J., Roberts, H. P., Tamplin, J. W., Raithel, C., Johnson, L., … Wicklow, B. (2022). Distribution models combined with standardized surveys reveal widespread habitat loss in a threatened turtle species. Biological Conservation, 266. 109437. https://doi.org/10.1016/j.biocon.2021.109437.
Wilson, T. P. (1997). Habitat selection and nest survivorship of the spotted turtle, Clemmys guttata: A preliminary report. Bulletin of the Chicago Herpetological Society, 32, 151-152.
Yang, L., Jin, S., Danielson, P., Homer, C., Gass, L., Bender, S. M., Case, A., Costello, C., Dewitz, J., Fry, J., Funk, M., Granneman, B., Liknes, G. C., Rigge, M., & Xian, G. (2018). A new generation of the United States National Land Cover Database-Requirements, research priorities, design, and implementation strategies. ISPRS Journal of Photogrammetry and Remote Sensing, 146, 108-123. https://doi.org/10.1016/j.isprsjprs.2018.09.006.
Grant Information:
NR193A750023C003 Natural Resources Conservation Service; 2017-00 Northeast's Regional Conservation Needs Program; F15AC00965 U.S. Fish and Wildlife Service; F18AP00182 U.S. Fish and Wildlife Service; WVA00820 USDA National Institute of Food and Agriculture
Contributed Indexing:
Keywords: adaptive capacity; agriculture; climate change; land use; landscape structure; temperature; turtle; wetland configuration
Entry Date(s):
Date Created: 20230201 Date Completed: 20230413 Latest Revision: 20230529
Update Code:
20240105
DOI:
10.1111/gcb.16625
PMID:
36723260
Czasopismo naukowe
Climate change and land-use change are leading drivers of biodiversity decline, affecting demographic parameters that are important for population persistence. For example, scientists have speculated for decades that climate change may skew adult sex ratios in taxa that express temperature-dependent sex determination (TSD), but limited evidence exists that this phenomenon is occurring in natural settings. For species that are vulnerable to anthropogenic land-use practices, differential mortality among sexes may also skew sex ratios. We sampled the spotted turtle (Clemmys guttata), a freshwater species with TSD, across a large portion of its geographic range (Florida to Maine), to assess the environmental factors influencing adult sex ratios. We present evidence that suggests recent climate change has potentially skewed the adult sex ratio of spotted turtles, with samples following a pattern of increased proportions of females concomitant with warming trends, but only within the warmer areas sampled. At intermediate temperatures, there was no relationship with climate, while in the cooler areas we found the opposite pattern, with samples becoming more male biased with increasing temperatures. These patterns might be explained in part by variation in relative adaptive capacity via phenotypic plasticity in nest site selection. Our findings also suggest that spotted turtles have a context-dependent and multi-scale relationship with land use. We observed a negative relationship between male proportion and the amount of crop cover (within 300 m) when wetlands were less spatially aggregated. However, when wetlands were aggregated, sex ratios remained consistent. This pattern may reflect sex-specific patterns in movement that render males more vulnerable to mortality from agricultural machinery and other threats. Our findings highlight the complexity of species' responses to both climate change and land use, and emphasize the role that landscape structure can play in shaping wildlife population demographics.
(© 2023 John Wiley & Sons Ltd. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.)
Comment in: Glob Chang Biol. 2023 May;29(10):2641-2642. (PMID: 36788755)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies