Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Statistical analysis of shoreline change reveals erosion and baseline are increasing off the northern Tamil Nadu Coasts of India.

Tytuł:
Statistical analysis of shoreline change reveals erosion and baseline are increasing off the northern Tamil Nadu Coasts of India.
Autorzy:
Thomas GAJ; Centre for Remote Sensing and Geo-informatics, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India.; Centre for Ocean Research, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India.
Santha Ravindranath RR; Centre for Ocean Research, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India.; Faculty of Fisheries, Kerala University of Fisheries and Ocean Studies, Cochin, Kerala, India.
Jeyagopal S; National Technology Centre for Ports, Waterways and Coasts, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India.
Thodhal Yoganandham S; Centre for Ocean Research, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India. .; Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnamdo, Republic of Korea. .
Źródło:
Environmental monitoring and assessment [Environ Monit Assess] 2023 Feb 17; Vol. 195 (3), pp. 409. Date of Electronic Publication: 2023 Feb 17.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: 1998- : Dordrecht : Springer
Original Publication: Dordrecht, Holland ; Boston : D. Reidel Pub. Co., c1981-
MeSH Terms:
Environmental Monitoring*/methods
Geographic Information Systems*
India ; Satellite Imagery
References:
Anand, K. V., Sundar, V., Sannasiraj, S. A., Murali, K., Rangarao, V., & Subramanian, B. R. (2011). Littoral transport estimate from the field measurement along north Chennai coast of Tamil Nadu, India. Asian and Pacific Coasts, 2011, 1541–1548. https://doi.org/10.1142/9789814366489_0185. (PMID: 10.1142/9789814366489_0185)
Ayyappan, K., & Thiruvenkatasamy, K. (2018). On the hydrodynamics of shoreline morphological changes and its impact on tidal stability in the presence of groins using field measurements at Muttukadu Estuary. International Journal of Civil Engineering and Technology, 9, 912–922.
Bagli, S., & Soille, P. (2003). Morphological automatic extraction of Pan-European coastline from Landsat ETM+ images. Proceedings of the Fifth International Symposium on GIS and Computer Cartography for Coastal Zone Management, Genova, 26 September 2003, 58–69.
Berberoglu, S., & Akin, A. (2009). Assessing different remote sensing techniques to detect land use/cover changes in the eastern Mediterranean. International Journal of Applied Earth Observation and Geoinformation, 11(1), 46–53. https://doi.org/10.1016/j.jag.2008.06.002. (PMID: 10.1016/j.jag.2008.06.002)
Chand, P., & Acharya, P. (2010). Shoreline change and sea level rise along coast of Bhitarkanika wildlife sanctuary, Orissa: An analytical approach of remote sensing and statistical techniques. International Journal of Geomatics and Geosciences, 1(3), 436–455.
Chen, C., Bu, J., Zhang, Y., Zhuang, Y., Chu, Y., Hu, J., & Guo, B. (2019). The application of the tasseled cap transformation and feature knowledge for the extraction of coastline information from remote sensing images. Advances in Space Research, 64, 1780–1791. https://doi.org/10.1016/j.asr.2019.07.032. (PMID: 10.1016/j.asr.2019.07.032)
Cherian, A., Chandrasekar, N., Gujar, A. R., & Rajamanickam, G. V. (2012). Coastal erosion assessment along the southern Tamil Nadu coast, India. International Journal of Earth Sciences & Engineering, 5(02), 352–357.
Crowell, M., Douglas, B. C., & Leatherman, S. P. (1997). On forecasting future U.S. shoreline positions: a test of algorithms. Journal of Coastal Research, 13(4), 1245–1255.
Deepika, B., Avinash, K., & Jayappa, K. S. (2014). Shoreline change rate estimation and its forecast: Remote sensing, geographical information system and statistics-based approach. International Journal of Environmental Science and Technology, 11, 395–416. https://doi.org/10.1007/s13762-013-0196-1. (PMID: 10.1007/s13762-013-0196-1)
Deepthi, K. (2012). Unraveling the shelf sediment dynamics using field data, remote sensing and numerical model for Kalpakkam, southeast coast of India. (Doctor of Philosophy, Dissertation, Anna University, Chennai).
Dolan, R., Fenster, M. S., & Holme, S. J. (1991). Temporal analysis of shoreline recession and accretion. Journal of Coastal Research, 7(3), 723–744.
Douglas, B. C., & Crowell, M. (2000). Long-term shoreline position prediction and error propagation. Journal of Coastal Research, 16(1), 145–152.
Genz, A. S., Fletcher, C. H., Dunn, R. A., Frazer, L. N., & Rooney, J. J. (2007). The predictive accuracy of shoreline change rate methods and alongshore beach variation on Maui. Hawaii. Journal of Coastal Research, 23(1), 87–105. (PMID: 10.2112/05-0521.1)
Hegde, A. V. (2010). Coastal erosion and mitigation methods–Global state of art. Indian Journal of Geo-Marine Sciences, 39(4), 521–530.
Himmelstoss, E. A., Henderson, R. E., Kratzmann, M. G., & Farris, A. S. (2021). Digital Shoreline Analysis System (DSAS) version 5.1 user guide: U.S. Geological Survey Open-File Report, 2021–1091.  https://doi.org/10.3133/ofr20211091.
Jayakumar, K., & Malarvannan, S. (2016). Assessment of shoreline changes over the northern Tamil Nadu coast, South India using WebGIS techniques. Journal of Coastal Conservation, 20(6), 477–487. (PMID: 10.1007/s11852-016-0461-9)
Kaliraj, S., Chandrasekar, N., & Magesh, N. S. (2015). Evaluation of coastal erosion and accretion processes along the southwest coast of Kanyakumari, Tamil Nadu using geospatial techniques. Arabian Journal of Geosciences, 8(1), 239–253. https://doi.org/10.1007/s12517-013-1216-7. (PMID: 10.1007/s12517-013-1216-7)
Kankara, R. S., Mohan, R., & Venkatachalapathy, R. (2013). Hydrodynamic modelling of Chennai coast from a coastal zone management perspective. Journal of Coastal Research, 29(2), 347–357.
Kannan, R., Anand, K. V., Sundar, V., Sannasiraj, S. A., & Rangarao, V. (2014). Shoreline changes along the Northern coast of Chennai port, from field measurements. ISH Journal of Hydraulic Engineering, 20(1), 24–31. https://doi.org/10.1080/09715010.2013.821789. (PMID: 10.1080/09715010.2013.821789)
Kumaravel, S., Ramkumar, T., Gurunanam, B., Suresh, M., & Dharanirajan, K. (2013). An application of remote sensing and GIS based shoreline change studies–A case study in the Cuddalore District, East Coast of Tamil Nadu, South India. International Journal of Innovative Technology and Exploring Engineering, 2(4), 211–215.
Li, D., & Tang, P. (2013). A sensor specified method based on spectral transformation for masking cloud in Landsat data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(3), 1619–1627. https://doi.org/10.1109/JSTARS.2013.2259469. (PMID: 10.1109/JSTARS.2013.2259469)
Li, R., Di, K., & Ma, R. (2001). A comparative study of shoreline mapping techniques. (The Fourth International Symposium on Computer Mapping and GIS for Coastal Zone Management). Halifax, Nova Scotia, Canada.
Liu, H., & Jezek, K. C. (2004). Automated extraction of coastline from satellite imagery by integrating Canny edge detection and locally adaptive thresholding methods. International Journal of Remote Sensing, 25(5), 937–958. https://doi.org/10.1080/0143116031000139890. (PMID: 10.1080/0143116031000139890)
Maiti, S., & Bhattacharya, A. K. (2009). Shoreline change analysis and its application to prediction: A remote sensing and statistics-based approach. Marine Geology, 257(1–4), 11–23. https://doi.org/10.1016/j.margeo.2008.10.006. (PMID: 10.1016/j.margeo.2008.10.006)
Marfai, M. A., Almohammad, H., Dey, S., Susanto, B., & King, L. (2008). Coastal dynamic and shoreline mapping: Multi-sources spatial data analysis in Semarang Indonesia. Environmental Monitoring and Assessment, 142(1), 297–308. https://doi.org/10.1007/s10661-007-9929-2. (PMID: 10.1007/s10661-007-9929-2)
Mariappan, V. E., & Devi, R. S. (2012). Chennai coast vulnerability assessment using optical satellite data and GIS techniques. International Journal of Remote Sensing & GIS, 1(3), 175–182.
Mary, G. M. R., Sundar, V., & Sannasiraj, S. A. (2022). Analysis of shoreline change between inlets along the coast of Chennai, India. Marine Georesources & Geotechnology, 40(1), 26–35. https://doi.org/10.1080/1064119X.2020.1856241. (PMID: 10.1080/1064119X.2020.1856241)
Mills, J. P., Buckley, S. J., Mitchell, H. L., Clarke, P. J., & Edwards, S. J. (2005). A geomatics data integration technique for coastal change monitoring. Earth Surface Processes and Landforms, 30(6), 651–664. https://doi.org/10.1002/esp.1165. (PMID: 10.1002/esp.1165)
Mujabar, P. S., & Chandrasekar, N. (2013). Shoreline change analysis along the coast between Kanyakumari and Tuticorin of India using remote sensing and GIS. Arabian Journal of Geosciences, 6(3), 647–664. https://doi.org/10.1007/s12517-011-0394-4. (PMID: 10.1007/s12517-011-0394-4)
Nassar, K., Mahmod, W. E., Masria, A., Fath, H., & Nadaoka, K. (2018). Numerical simulation of shoreline responses in the vicinity of the western artificial inlet of the Bardawil Lagoon, Sinai Peninsula, Egypt. Applied Ocean Research, 74, 87–101. https://doi.org/10.1016/j.apor.2018.02.015. (PMID: 10.1016/j.apor.2018.02.015)
Natesan, U., Parthasarathy, A., Vishnunath, R., Kumar, G. E. J., & Ferrer, V. A. (2015). Monitoring longterm shoreline changes along Tamil Nadu, India using geospatial techniques. Aquatic Procedia, 4, 325–332. https://doi.org/10.1016/j.aqpro.2015.02.044. (PMID: 10.1016/j.aqpro.2015.02.044)
Pandian, P. K., Ramesh, S., Murthy, M. V. R., Ramachandran, S., & Thayumanavan, S. (2004). Shoreline changes and near shore processes along Ennore coast, east coast of South India. Journal of Coastal Research, 20(3), 828–845. (PMID: 10.2112/1551-5036(2004)20[828:SCANSP]2.0.CO;2)
Raj, N., Gurugnanam, B., Sudhakar, V., & Francis, P. G. (2019). Estuarine shoreline change analysis along The Ennore river mouth, south east coast of India, using digital shoreline analysis system. Geodesy & Geodynamics, 10, 205–212. https://doi.org/10.1016/j.geog.2019.04.002. (PMID: 10.1016/j.geog.2019.04.002)
Raj, N., Rejin Nishkalank, R. A., & Chrisben Sam, S. (2020). Coastal shoreline changes in Chennai: Environment impacts and control strategies of southeast coast Tamil Nadu. Hussain, C. (eds) Handbook of Environmental Materials Management, 1–14. Cham: Springer.  https://doi.org/10.1007/978-3-319-58538-3_223-1.
Rasuly, A., Naghdifar, R., & Rasoli, M. (2010). Monitoring of Caspian Sea coastline changes using object-oriented techniques. Procedia Environmental Sciences, 2, 416–426. https://doi.org/10.1016/j.proenv.2010.10.046. (PMID: 10.1016/j.proenv.2010.10.046)
Roy, S., Mahapatra, M., & Chakraborty, A. (2018). Shoreline change detection along the coast of Odisha, India using digital shoreline analysis system. Spatial Information Research, 26, 563–571. https://doi.org/10.1007/s41324-018-0199-6. (PMID: 10.1007/s41324-018-0199-6)
Saranathan, E., Chandrasekaran, R., Soosai Manickaraj, D., & Kannan, M. (2011). Shoreline changes in Tharangampadi Village, Nagapattinam District, Tamil Nadu, India-A case study. Journal of the Indian Society of Remote Sensing, 39, 107–115. https://doi.org/10.1007/s12524-010-0052-4. (PMID: 10.1007/s12524-010-0052-4)
Saravanan, S., Chandrasekar, N., Mujabar, P. S., & Hentry, C. (2011). An overview of beach morphodynamic classification along the beaches between Ovari and Kanyakumari, Southern Tamil Nadu coast, India. Physical Oceanography, 21, 129–141. https://doi.org/10.1007/s11110-011-9110-x. (PMID: 10.1007/s11110-011-9110-x)
Sherman, D. J., & Bauer, B. O. (1993). Coastal geomorphology through the looking glass. Geomorphology, 7(1–3), 225–249. https://doi.org/10.1016/0169-555X(93)90018-W. (PMID: 10.1016/0169-555X(93)90018-W)
Sriganesh, J., Saravanan, P., & Ram Mohan, V. (2015). Remote sensing and GIS analysis on Cuddalore Coast of Tamil Nadu, India. Journal of Advanced Research in Geo Sciences & Remote Sensing, 2(3&4), 94–108.
Thieler, E. R., Himmelstoss, E. A., Zichichi, J. L., & Ergul, A. (2017). Digital Shoreline Analysis System (DSAS) version 4.0—An ArcGIS extension for calculating shoreline change (ver. 4.4, July 2017): U.S. Geological Survey Open-File Report 2008–1278. https://doi.org/10.3133/ofr20081278.
Van, T. T., & Binh, T. T. (2009). Application of remote sensing for shoreline change detection in Cuu Long estuary. Environmental Science, Mathematics.
Vinayaraj, P., Johnson, G., Udhaba Dora, G., Sajiv Philip, C., Sanil Kumar, V., & Gowthaman, R. (2011). Quantitative estimation of coastal changes along selected locations of Karnataka, India: A GIS and remote sensing approach. International Journal of Geosciences, 2(4), 385–393. https://doi.org/10.4236/ijg.2011.24041. (PMID: 10.4236/ijg.2011.24041)
Contributed Indexing:
Keywords: Accretion; Erosion; Rate of change; Satellite image
Entry Date(s):
Date Created: 20230217 Date Completed: 20230222 Latest Revision: 20230222
Update Code:
20240105
DOI:
10.1007/s10661-023-11015-0
PMID:
36800075
Czasopismo naukowe
Many tourists have been recently attracted towards the coasts around the world, especially to the large urban centres and economically significant areas. In the last four decades, there is a significant increase in the key coastal developments and tourist's attractions like major ports, minor ports, fishing harbours, desalination plants, shore protection structures, and many more along the southeast coasts of India, in particular, northern Tami Nadu coastal stretches. The shoreline change study of these regions were carried out using the geospatial technologies (satellite remote sensing and geographical information system) to examine potential modifications occurred during the last 32 years between March 1990 and May 2022. This study used Landsat satellite images of spatial resolution 30 m to track the shoreline changes which was extracted using the Digital Image Processing software and techniques. In addition, the United States Geological Survey (USGS) developed Digital Shoreline Analysis System (DSAS) v5.2 software, an add-on tool to ArcGIS used for the statistical analysis to compute the shoreline rate of change. The linear regression rate (LRR) and end point rate (EPR) statistics were used to identify the eroding, accreting, and stable shoreline between Kattupalli coast and Kalpakkam coast of the northern Tamil Nadu coasts. This shoreline study of 106 km was carried out by dividing it into six zones (zone 1 to zone 6), and the DSAS analysis conveys that the shoreline of zone 1 (Kattupalli) and zone 2 (Ennore) shows erosion compared to other four zones. In locations where the coast is vulnerable, national mitigation measures must be implemented.
(© 2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies