Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Carbon emission fluctuations of Chinese inter-regional interaction: a network multi-hub diffusion perspective.

Tytuł:
Carbon emission fluctuations of Chinese inter-regional interaction: a network multi-hub diffusion perspective.
Autorzy:
Du P; Business School, University of Jinan, Jinan, 250002, China.
Ni Y; Business School, University of Jinan, Jinan, 250002, China. .
Chen H; Business School, University of Jinan, Jinan, 250002, China.
Źródło:
Environmental science and pollution research international [Environ Sci Pollut Res Int] 2023 Apr; Vol. 30 (18), pp. 52141-52156. Date of Electronic Publication: 2023 Feb 24.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: <2013->: Berlin : Springer
Original Publication: Landsberg, Germany : Ecomed
MeSH Terms:
Carbon*/analysis
Carbon Compounds, Inorganic*/analysis
Economic Development*
Environmental Policy*
Industry*/organization & administration
Industry*/standards
Environmental Monitoring*/methods
Environmental Monitoring*/standards
Humans ; Beijing ; Carbon Dioxide/analysis ; China
References:
Acemoglu D, Carvalho VM, Ozdaglar A, Tahbaz-Salehi A (2012) The Network Origins of Aggregate Fluctuations. Econometrica 80:1977–2016. https://doi.org/10.3982/ECTA9623. (PMID: 10.3982/ECTA9623)
Acemoglu D, Ozdaglar A, Tahbaz-Salehi A (2015) Systemic Risk and Stability in Financial Networks. Am Econ Rev 105:564–608. https://doi.org/10.1257/aer.20130456. (PMID: 10.1257/aer.20130456)
Al-mulali U, Sheau-Ting L (2014) Econometric analysis of trade, exports, imports, energy consumption and CO2 emission in six regions. Renew Sustain Energy Rev 33:484–498. https://doi.org/10.1016/j.rser.2014.02.010. (PMID: 10.1016/j.rser.2014.02.010)
Antonakakis N, Chatziantoniou I, Filis G (2017) Energy consumption, CO 2 emissions, and economic growth: An ethical dilemma. Renew Sustain Energy Rev 68:808–824. https://doi.org/10.1016/j.rser.2016.09.105. (PMID: 10.1016/j.rser.2016.09.105)
Atalay E (2017) How Important Are Sectoral Shocks? Am Econ J Macroecon 9:254–280. https://doi.org/10.1257/mac.20160353. (PMID: 10.1257/mac.20160353)
Barauskaite K, Nguyen ADM (2021) Global intersectoral production network and aggregate fluctuations. Econ Model 102:105577. https://doi.org/10.1016/j.econmod.2021.105577. (PMID: 10.1016/j.econmod.2021.105577)
Basheer M, Nechifor V, Calzadilla A et al (2022) Balancing national economic policy outcomes for sustainable development. Nat Commun 13:5041. https://doi.org/10.1038/s41467-022-32415-9. (PMID: 10.1038/s41467-022-32415-9)
Bonacich P (1972) Factoring and weighting approaches to status scores and clique identification. J Math Sociol 2:113–120. https://doi.org/10.1080/0022250X.1972.9989806. (PMID: 10.1080/0022250X.1972.9989806)
Bonacich P (1987) Power and Centrality: A Family of Measures. Am J Sociol 92:1170–1182. https://doi.org/10.1086/228631. (PMID: 10.1086/228631)
Borgatti S, Everett M (1999) Models of Core/Periphery Structures. Soc Netw 21:375–395. https://doi.org/10.1016/S0378-8733(99)00019-2. (PMID: 10.1016/S0378-8733(99)00019-2)
Carvalho V, Gabaix X (2013) The Great Diversification and Its Undoing. Am Econ Rev 103:1697–1727. https://doi.org/10.1257/aer.103.5.1697. (PMID: 10.1257/aer.103.5.1697)
Chen G, Hadjikakou M, Wiedmann T (2017) Urban carbon transformations: unravelling spatial and inter-sectoral linkages for key city industries based on multi-region input–output analysis. J Clean Prod 163:224–240. https://doi.org/10.1016/j.jclepro.2016.04.046. (PMID: 10.1016/j.jclepro.2016.04.046)
Du P, Wang A (2018) The Economic Landscape of the World Carbon Transfer and China’s Midstream Status: An Empirical Analysis based on Network Governance. World Econ Stud 95–107+137. https://doi.org/10.13516/j.cnki.wes.2018.07.008.
Feng K, Hubacek K, Sun L, Liu Z (2014) Consumption-based CO2 accounting of China’s megacities: The case of Beijing, Tianjin, Shanghai and Chongqing. Ecol Ind 47:26–31. https://doi.org/10.1016/j.ecolind.2014.04.045. (PMID: 10.1016/j.ecolind.2014.04.045)
Fu Y-H, Huang C-Y, Sun C-T (2015) Identifying Super-Spreader Nodes in Complex Networks. Math Probl Eng 2015:1–8. https://doi.org/10.1155/2015/675713. (PMID: 10.1155/2015/675713)
Fuso Nerini F, Tomei J, To LS (2018) Mapping synergies and trade-offs between energy and the Sustainable Development Goals. Nat Energy 3:10–15. https://doi.org/10.1038/s41560-017-0036-5. (PMID: 10.1038/s41560-017-0036-5)
Gabaix X (2011) The Granular Origins of Aggregate Fluctuations. Econometrica 79:733–772. https://doi.org/10.3982/ECTA8769. (PMID: 10.3982/ECTA8769)
Garas A, Argyrakis P, Rozenblat C et al (2010) Worldwide spreading of economic crisis. New J Phys 12:113043. https://doi.org/10.1088/1367-2630/12/11/113043. (PMID: 10.1088/1367-2630/12/11/113043)
Greenstone M, He G, Li S, Zou EY (2021) China’s War on Pollution: Evidence from the First 5 Years. Rev Environ Econ Policy 15:281–299. https://doi.org/10.1086/715550. (PMID: 10.1086/715550)
Hermannsson K, McIntyre SG (2014) Local consumption and territorial based accounting for CO2 emissions. Ecol Econ 104:1–11. https://doi.org/10.1016/j.ecolecon.2014.04.020. (PMID: 10.1016/j.ecolecon.2014.04.020)
Hu M, Chen S, Wang Y et al (2021) Identifying the key sectors for regional energy, water and carbon footprints from production-, consumption- and network-based perspectives. Sci Total Environ 764:142821. https://doi.org/10.1016/j.scitotenv.2020.142821. (PMID: 10.1016/j.scitotenv.2020.142821)
IPCC (2019) 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. https://www.ipcc-nggip.iges.or.jp/public/2006gl/chinese/index.html . Accessed 14 Nov 2022.
Islam M, Kanemoto K, Managi S (2016) Impact of Trade Openness and Sector Trade on Embodied Greenhouse Gases Emissions and Air Pollutants. J Ind Ecol 20:494–505. https://doi.org/10.1111/jiec.12455. (PMID: 10.1111/jiec.12455)
Jeong M, You JS (2022) Estimating the economic costs of nuclear power plant outages in a regulated market using a latent factor model. Renew Sustain Energy Rev 166:112582. https://doi.org/10.1016/j.rser.2022.112582. (PMID: 10.1016/j.rser.2022.112582)
Jiang M, Gao X, Guan Q et al (2019) The structural roles of sectors and their contributions to global carbon emissions: A complex network perspective. J Clean Prod 208:426–435. https://doi.org/10.1016/j.jclepro.2018.10.127. (PMID: 10.1016/j.jclepro.2018.10.127)
Kanemoto K, Moran D, Hertwich EG (2016) Mapping the Carbon Footprint of Nations. Environ Sci Technol 50:10512–10517. https://doi.org/10.1021/acs.est.6b03227. (PMID: 10.1021/acs.est.6b03227)
Katz L (1953) A new status index derived from sociometric analysis. Psychometrika 18:39–43. https://doi.org/10.1007/BF02289026. (PMID: 10.1007/BF02289026)
Kitsak M, Gallos LK, Havlin S et al (2010) Identification of influential spreaders in complex networks. Nature Phys 6:888–893. https://doi.org/10.1038/nphys1746. (PMID: 10.1038/nphys1746)
König MD, Levchenko A, Rogers T, Zilibotti F (2022) Aggregate fluctuations in adaptive production networks. Proc Natl Acad Sci USA 119:e2203730119. https://doi.org/10.1073/pnas.2203730119. (PMID: 10.1073/pnas.2203730119)
Li Y, Wang Z, He W et al (2021) Critical transmission sectors for CO2 emission mitigation in supply chains. Technol Forecast Soc Change 164:120499. https://doi.org/10.1016/j.techfore.2020.120499. (PMID: 10.1016/j.techfore.2020.120499)
Liu Z, Guan D, Wei W (2015) Reduced carbon emission estimates from fossil fuel combustion and cement production in China. Nature 524:335–338. https://doi.org/10.1038/nature14677. (PMID: 10.1038/nature14677)
López LA, Arce G, Jiang X (2020) Mapping China’s flows of emissions in the world’s carbon footprint: A network approach of production layers. Energy Econ 87:104739. https://doi.org/10.1016/j.eneco.2020.104739. (PMID: 10.1016/j.eneco.2020.104739)
Lucas RE (1977) Understanding business cycles. Carn-Roch Conf Ser Public Policy 5:7–29. https://doi.org/10.1016/0167-2231(77)90002-1. (PMID: 10.1016/0167-2231(77)90002-1)
Lv K, Feng X, Kelly S et al (2019) A study on embodied carbon transfer at the provincial level of China from a social network perspective. J Clean Prod 225:1089–1104. https://doi.org/10.1016/j.jclepro.2019.03.233. (PMID: 10.1016/j.jclepro.2019.03.233)
Mishra A, Humpenöder F, Churkina G (2022) Land use change and carbon emissions of a transformation to timber cities. Nat Commun 13:4889. https://doi.org/10.1038/s41467-022-32244-w. (PMID: 10.1038/s41467-022-32244-w)
Muhammad S, Long X, Salman M, Dauda L (2020) Effect of urbanization and international trade on CO2 emissions across 65 belt and road initiative countries. Energy 196:117102. https://doi.org/10.1016/j.energy.2020.117102. (PMID: 10.1016/j.energy.2020.117102)
Mulugetta Y, Sokona Y, Trotter PA (2022) Africa needs context-relevant evidence to shape its clean energy future. Nat Energy. https://doi.org/10.1038/s41560-022-01152-0. (PMID: 10.1038/s41560-022-01152-0)
Namtirtha A, Dutta A, Dutta B (2018) Identifying influential spreaders in complex networks based on kshell hybrid method. Physica A 499:310–324. https://doi.org/10.1016/j.physa.2018.02.016. (PMID: 10.1016/j.physa.2018.02.016)
Novotnik B, Nandy A, Venkatesan SV (2020) Can fossil fuel energy be recovered and used without any CO2 emissions to the atmosphere? Rev Environ Sci Biotechnol 19:217–240. https://doi.org/10.1007/s11157-020-09527-z. (PMID: 10.1007/s11157-020-09527-z)
Peters GP, Minx JC, Weber CL, Edenhofer O (2011) Growth in emission transfers via international trade from 1990 to 2008. Proc Natl Acad Sci USA 108:8903–8908. https://doi.org/10.1073/pnas.1006388108. (PMID: 10.1073/pnas.1006388108)
Qian Y, Behrens P, Tukker A et al (2019) Environmental responsibility for sulfur dioxide emissions and associated biodiversity loss across Chinese provinces. Environ Pollut 245:898–908. https://doi.org/10.1016/j.envpol.2018.11.043. (PMID: 10.1016/j.envpol.2018.11.043)
Sachs JD, Schmidt-Traub G, Mazzucato M et al (2019) Six Transformations to achieve the Sustainable Development Goals. Nat Sustain 2:805–814. https://doi.org/10.1038/s41893-019-0352-9. (PMID: 10.1038/s41893-019-0352-9)
SCC (2013) Air Pollution Prevention and Control Action Plan during 2013–2017. http://www.gov.cn/zwgk/2013-09/12/content_2486773.htm . Accessed 8 Nov 2022.
SCC (2018) Three-Year Plan on Defending the Blue Sky. State Council of China. http://www.gov.cn/zhengce/content/2018-07/03/content_5303158.htm . Accessed 8 Nov 2022.
Semieniuk G (2022) Industrial policies and the competition for low-carbon manufacturing. Joule 6:713–715. https://doi.org/10.1016/j.joule.2022.03.007. (PMID: 10.1016/j.joule.2022.03.007)
Shi Q, Zheng B, Zheng Y (2022) Co-benefits of CO2 emission reduction from China’s clean air actions between 2013–2020. Nat Commun 13:5061. https://doi.org/10.1038/s41467-022-32656-8. (PMID: 10.1038/s41467-022-32656-8)
Su B, Thomson E (2016) China’s carbon emissions embodied in (normal and processing) exports and their driving forces, 2006–2012. Energy Econ 59:414–422. https://doi.org/10.1016/j.eneco.2016.09.006. (PMID: 10.1016/j.eneco.2016.09.006)
Vause J, Gao L, Shi L, Zhao J (2013) Production and consumption accounting of CO2 emissions for Xiamen, China. Energy Policy 60:697–704. https://doi.org/10.1016/j.enpol.2013.04.069. (PMID: 10.1016/j.enpol.2013.04.069)
Wang C, Miao W, Lu M (2022) Evolution of the Chinese industrial structure: A social network perspective. Technol Forecast Soc Change 184:121972. https://doi.org/10.1016/j.techfore.2022.121972. (PMID: 10.1016/j.techfore.2022.121972)
Wang Z, Andrews MA, Wu Z-X et al (2015) Coupled disease–behavior dynamics on complex networks: A review. Phys Life Rev 15:1–29. https://doi.org/10.1016/j.plrev.2015.07.006. (PMID: 10.1016/j.plrev.2015.07.006)
Wang Z, Xiao C, Niu B et al (2017) Identify sectors’ role on the embedded CO2 transfer networks through China’s regional trade. Ecol Ind 80:114–123. https://doi.org/10.1016/j.ecolind.2017.05.013. (PMID: 10.1016/j.ecolind.2017.05.013)
West PC (2019) Redesigning Planning, Governance, and Policies to Achieve Multiple Sustainable Development Goals. One Earth 1:303–304. https://doi.org/10.1016/j.oneear.2019.11.002. (PMID: 10.1016/j.oneear.2019.11.002)
Zhang J, Zhu M, Yu M et al (2022) Evaluation of multiple air pollutant emission reductions in northern China district via resource sharing. J Clean Prod 379:134743. https://doi.org/10.1016/j.jclepro.2022.134743. (PMID: 10.1016/j.jclepro.2022.134743)
Zhang X, Zhao X, Jiang Z, Shao S (2017) How to achieve the 2030 CO2 emission-reduction targets for China’s industrial sector: Retrospective decomposition and prospective trajectories. Glob Environ Chang 44:83–97. https://doi.org/10.1016/j.gloenvcha.2017.03.003. (PMID: 10.1016/j.gloenvcha.2017.03.003)
Zhao B, Chen X, Chen G (2013) Construction and Analysis of the Foundational Industry Linkage Tree ——on the Example of Shandong and Jiangsu Province. Manag Rev 25:35–42. https://doi.org/10.14120/j.cnki.cn11-5057/f.2013.02.008.
Zhao B, Xiang X, Zhang M (2017) Network model for inter-regional interaction of aggregate fluctuations. Systems Engineering-Theory & Practice 37:2611–2620. https://doi.org/10.12011/1000-6788(2017)10-2611-10.
Zhao B, Xiao W, Tong R et al (2015) The connotation of blue economy from the perspective of industrial network and its related structure effect: A case study of Shandong Province. China Soft Science 135–147.
Zheng H, Bai Y, Wei W et al (2021) Chinese provincial multi-regional input-output database for 2012, 2015, and 2017. Sci Data 8:244. https://doi.org/10.1038/s41597-021-01023-5.
Zheng X, Wang R, Hoekstra AY et al (2021) Consideration of culture is vital if we are to achieve the Sustainable Development Goals. One Earth 4:307–319. https://doi.org/10.1016/j.oneear.2021.01.012.
Grant Information:
18BGL188 National Social Science Fund of China
Contributed Indexing:
Keywords: Carbon emission fluctuations; Diffusion effect; Hub industry; Inter-regional interaction; Multi-regional input–output model
Substance Nomenclature:
7440-44-0 (Carbon)
0 (Carbon Compounds, Inorganic)
142M471B3J (Carbon Dioxide)
Entry Date(s):
Date Created: 20230224 Date Completed: 20230424 Latest Revision: 20230424
Update Code:
20240105
DOI:
10.1007/s11356-023-25994-7
PMID:
36823461
Czasopismo naukowe
The "double-carbon" policy is a new opportunity for the transformation of China's production sector. With steady economic growth, each province has proposed specific policies aimed at cleaner production. However, the interactions between regions and the complex linkages between industries have hindered the implementation of the "double-carbon" policy. In order to address this issue, we introduced a complex network framework with multiple industries at a national level. The framework aimed to clarify whether there is fluctuation diffusion in China's multi-province multi-industry carbon emission system, to identify key industries and regions, and to answer the question of "who" is the most effective in governance. The results showed that the fluctuations of industrial carbon emissions had a cross-regional diffusion effect in China indeed. The diffusion capacity of industry fluctuation depends on whether the industry is located at a "hub" position in the network. Hub industries with strong capacity can spread the carbon emission fluctuation of themselves and upstream or downstream industries to the whole country through regional interactions. This characteristic of the hub industry should be taken into account in governance to maximize the effectiveness of emission reduction. Shandong and Inner Mongolia, as important provinces for the production of intermediate products and energy chemicals in China, had a greater role to play in global carbon supply push from their hub industries than in the demand pull. The pulling capacity of Beijing-Tianjin-Hebei region to the national carbon demand side was greater than that of Yangtze River Delta and Pearl River Delta. These findings might have implications for environmental and economic policymaking, particularly with regard to cross-provincial coordinated systemic solutions and policy anchors for synergy with industries.
(© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies