Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Estimating individualized treatment effects from randomized controlled trials: a simulation study to compare risk-based approaches.

Tytuł:
Estimating individualized treatment effects from randomized controlled trials: a simulation study to compare risk-based approaches.
Autorzy:
Rekkas A; Department of Medical Informatics, Erasmus Medical Center, P.O. Box 2040, 3000, CA, Rotterdam, The Netherlands. .
Rijnbeek PR; Department of Medical Informatics, Erasmus Medical Center, P.O. Box 2040, 3000, CA, Rotterdam, The Netherlands.
Kent DM; Predictive Analytics and Comparative Effectiveness Center, Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, MA, USA.
Steyerberg EW; Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands.
van Klaveren D; Department of Public Health, Erasmus Medical Center, Rotterdam, The Netherlands.
Źródło:
BMC medical research methodology [BMC Med Res Methodol] 2023 Mar 28; Vol. 23 (1), pp. 74. Date of Electronic Publication: 2023 Mar 28.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: London : BioMed Central, [2001-
MeSH Terms:
Randomized Controlled Trials as Topic*
Humans ; Prognosis ; Computer Simulation ; Sample Size
References:
Proc Natl Acad Sci U S A. 2019 Mar 5;116(10):4156-4165. (PMID: 30770453)
J Comput Graph Stat. 2018;27(1):209-219. (PMID: 29706752)
Trials. 2010 Aug 12;11:85. (PMID: 20704705)
Biometrics. 2015 Sep;71(3):645-53. (PMID: 25962845)
J Clin Epidemiol. 2019 Oct;114:72-83. (PMID: 31195109)
BMJ. 2018 Dec 10;363:k4245. (PMID: 30530757)
Circ Cardiovasc Qual Outcomes. 2014 Jan;7(1):163-9. (PMID: 24425710)
Int J Epidemiol. 2016 Dec 1;45(6):2075-2088. (PMID: 27375287)
J Clin Epidemiol. 2013 Aug;66(8):818-25. (PMID: 23651763)
Biostatistics. 2015 Apr;16(2):368-82. (PMID: 25398774)
Lancet. 2013 Feb 23;381(9867):639-50. (PMID: 23439103)
Biom J. 2017 Jul;59(4):685-701. (PMID: 27862181)
J Pediatr. 2021 Sep;236:78-85.e5. (PMID: 34004189)
Circulation. 2005 Sep 27;112(13):2017-21. (PMID: 16186438)
J Clin Epidemiol. 2018 Feb;94:59-68. (PMID: 29132832)
Am Heart J. 1997 Jun;133(6):630-9. (PMID: 9200390)
Biostatistics. 2011 Apr;12(2):270-82. (PMID: 20876663)
J Biopharm Stat. 2014;24(1):110-29. (PMID: 24392981)
Lancet. 2020 Oct 31;396(10260):1399-1412. (PMID: 33038944)
Biometrics. 2012 Dec;68(4):1010-8. (PMID: 22550953)
Ann Intern Med. 2020 Jan 7;172(1):W1-W25. (PMID: 31711094)
Proc Natl Acad Sci U S A. 2016 Jul 5;113(27):7353-60. (PMID: 27382149)
Lancet. 1995 Jun 24;345(8965):1616-9. (PMID: 7783541)
Stat Med. 2019 Sep 20;38(21):4051-4065. (PMID: 31270850)
Am Heart J. 2000 May;139(5):745-51. (PMID: 10783203)
Stat Med. 2021 Nov 20;40(26):5961-5981. (PMID: 34402094)
Ann Intern Med. 2020 Jan 7;172(1):35-45. (PMID: 31711134)
Stat. 2012 Jan 1;1(1):103-114. (PMID: 23645940)
PLoS Med. 2017 Oct 17;14(10):e1002410. (PMID: 29040268)
Biostatistics. 2015 Jan;16(1):60-72. (PMID: 25122189)
BMJ. 1995 Nov 18;311(7016):1356-9. (PMID: 7496291)
J Natl Cancer Inst. 1988 Oct 5;80(15):1198-202. (PMID: 3047407)
Stat Med. 2018 May 20;37(11):1767-1787. (PMID: 29508417)
BMJ. 2015 Feb 19;350:h454. (PMID: 25697494)
BMC Med Res Methodol. 2020 Oct 23;20(1):264. (PMID: 33096986)
Contributed Indexing:
Keywords: Absolute benefit; Prediction models; Treatment effect heterogeneity
Entry Date(s):
Date Created: 20230328 Date Completed: 20230330 Latest Revision: 20230407
Update Code:
20240104
PubMed Central ID:
PMC10045909
DOI:
10.1186/s12874-023-01889-6
PMID:
36977990
Czasopismo naukowe
Background: Baseline outcome risk can be an important determinant of absolute treatment benefit and has been used in guidelines for "personalizing" medical decisions. We compared easily applicable risk-based methods for optimal prediction of individualized treatment effects.
Methods: We simulated RCT data using diverse assumptions for the average treatment effect, a baseline prognostic index of risk, the shape of its interaction with treatment (none, linear, quadratic or non-monotonic), and the magnitude of treatment-related harms (none or constant independent of the prognostic index). We predicted absolute benefit using: models with a constant relative treatment effect; stratification in quarters of the prognostic index; models including a linear interaction of treatment with the prognostic index; models including an interaction of treatment with a restricted cubic spline transformation of the prognostic index; an adaptive approach using Akaike's Information Criterion. We evaluated predictive performance using root mean squared error and measures of discrimination and calibration for benefit.
Results: The linear-interaction model displayed optimal or close-to-optimal performance across many simulation scenarios with moderate sample size (N = 4,250; ~ 785 events). The restricted cubic splines model was optimal for strong non-linear deviations from a constant treatment effect, particularly when sample size was larger (N = 17,000). The adaptive approach also required larger sample sizes. These findings were illustrated in the GUSTO-I trial.
Conclusions: An interaction between baseline risk and treatment assignment should be considered to improve treatment effect predictions.
(© 2023. The Author(s).)
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies