Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

An institutional review of genomic sequencing in pediatric solid tumors.

Tytuł:
An institutional review of genomic sequencing in pediatric solid tumors.
Autorzy:
Turco GM; Pediatric Hematology/Oncology Fellow, Duke University, Durham, North Carolina, USA.
Gupta A; Division of Pediatric Hematology/Oncology, Roswell Park Oishei Children's Cancer and Blood Disorders Program, Buffalo, New York, USA.
Monteleone P; Division of Pediatric Hematology/Oncology, State University of New York Upstate Medical University, Syracuse, New York, USA.
Kelly KM; Division of Pediatric Hematology/Oncology, Roswell Park Oishei Children's Cancer and Blood Disorders Program, Buffalo, New York, USA.
Klein RD; OmniSeq Corporation, Buffalo, New York, USA.
Wiltsie L; Division of Pediatric Hematology/Oncology, Massachusetts General Hospital for Children, Boston, Massachusetts, USA.
Barth M; Division of Pediatric Hematology/Oncology, Roswell Park Oishei Children's Cancer and Blood Disorders Program, Buffalo, New York, USA.
Źródło:
Pediatric blood & cancer [Pediatr Blood Cancer] 2023 Jun; Vol. 70 (6), pp. e30324. Date of Electronic Publication: 2023 Apr 05.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: Hoboken, N.J. : John Wiley, c 2004-
MeSH Terms:
Precision Medicine*/methods
Neoplasms*/drug therapy
Humans ; Child ; Retrospective Studies ; Mutation ; High-Throughput Nucleotide Sequencing/methods ; Genomics/methods ; Biomarkers, Tumor/genetics ; Molecular Targeted Therapy/methods
References:
Parsons DW, Roy A, Yang Y, et al. Diagnostic yield of clinical tumor and germline whole-exome sequencing for children with solid tumors. JAMA Oncol. 2016;2(5):616-624. doi:10.1001/jamaoncol.2015.5699.
Harris MH, DuBois SG, Glade Bender JL, et al. Multicenter feasibility study of tumor molecular profiling to inform therapeutic decisions in advanced pediatric solid tumors: the individualized cancer therapy (ICAT) study. JAMA Oncol. 2016;2(5):608-615. doi:10.1001/jamaoncol.2015.5689.
Oberg JA, Glade Bender JL, Sulis ML, et al. Implementation of next generation sequencing into pediatric hematology-oncology practice: moving beyond actionable alterations. Genome Med. 2016;8(1):133. doi:10.1186/s13073-016-0389-6.
Harttrampf AC, Lacroix L, Deloger M, et al. Molecular screening for cancer treatment optimization (MOSCATO-01) in pediatric patients: a single-institutional prospective molecular stratification trial. Clin Cancer Res. 2017;23(20):6101-6112. doi:10.1158/1078-0432.CCR-17-0381.
Mody RJ, Wu YM, Lonigro RJ, et al. Integrative clinical sequencing in the management of refractory or relapsed cancer in youth. JAMA. 2015;314(9):913-925. doi:10.1001/jama.2015.10080.
Worst BC, van Tilburg CM, Balasubramanian GP, et al. Next-generation personalised medicine for high-risk paediatric cancer patients-the INFORM pilot study. Eur J Cancer. 2016;65:91-101. doi:10.1016/j.ejca.2016.06.009.
Pincez T, Clément N, Lapouble E, et al. Feasibility and clinical integration of molecular profiling for target identification in pediatric solid tumors. Pediatr Blood Cancer. 2017;64(6):e26365. doi:10.1002/pbc.26365.
Church A, Corson L, Kao P-C, et al. Clinical impact of molecular tumor profiling in pediatric, adolescent, and young adult patients with extra-cranial solid malignancies: an interim report from the GAIN/iCat2 study. J Clin Oncol. 2021;39:10005-10005. 15_suppl.
Summers RJ, Castellino SM, Porter CC, et al. Comprehensive genomic profiling of high-risk pediatric cancer patients has a measurable impact on clinical care. JCO Precis Oncol. 2022;6:e2100451. doi:10.1200/PO.21.00451.
Conroy JM, Pabla S, Glenn ST, et al. A scalable high-throughput targeted next-generation sequencing assay for comprehensive genomic profiling of solid tumors. PLoS One. 2021;16(12):e0260089. doi:10.1371/journal.pone.0260089.
Li MM, Datto M, Duncavage EJ, et al. Standards and guidelines for the interpretation and reporting of sequence variants in cancer: a joint consensus recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017;19(1):4-23. doi:10.1016/j.jmoldx.2016.10.002.
Takagi M, Yoshida M, Nemoto Y, et al. Loss of DNA damage response in neuroblastoma and utility of a PARP inhibitor. J Natl Cancer Inst. 2017;109(11):djx062. doi:10.1093/jnci/djx062.
Jette NR, Kumar M, Radhamani S, et al. ATM-deficient cancers provide new opportunities for precision oncology. Cancers (Basel). 2020;12(3):687. doi:10.3390/cancers12030687.
Jette NR, Radhamani S, Arthur G, et al. Combined poly-ADP ribose polymerase and ataxia-telangiectasia mutated/Rad3-related inhibition targets ataxia-telangiectasia mutated-deficient lung cancer cells. Br J Cancer. 2019;121(7):600-610. doi:10.1038/s41416-019-0565-8.
Mateo J, Porta N, Bianchini D, et al. Olaparib in patients with metastatic castration-resistant prostate cancer with DNA repair gene aberrations (TOPARP-B): a multicentre, open-label, randomised, phase 2 trial. Lancet Oncol. 2020;21(1):162-174. doi:10.1016/S1470-2045(19)30684-9.
Mateo J, Carreira S, Sandhu S, et al. DNA-repair defects and olaparib in metastatic prostate cancer. N Engl J Med. 2015;373(18):1697-1708. doi:10.1056/NEJMoa1506859.
Terry RL, Meyran D, Ziegler DS, et al. Immune profiling of pediatric solid tumors. J Clin Invest. 2020;130(7):3391-3402. doi:10.1172/JCI137181.
Mossé YP, Lim MS, Voss SD, et al. Safety and activity of crizotinib for paediatric patients with refractory solid tumours or anaplastic large-cell lymphoma: a Children's Oncology Group phase 1 consortium study. Lancet Oncol. 2013;14(6):472-480. doi:10.1016/S1470-2045(13)70095-0.
Ou S, Bang Y, Camidge D, et al. Efficacy and safety of crizotinib in patients with advanced ROS1-rearranged non-small cell lung cancer (NSCLC). J Clin Oncol. 2013;31(15):8032.
Craig E, Wiltsie LM, Beaupin LK, et al. Anaplastic lymphoma kinase inhibitor therapy in the treatment of inflammatory myofibroblastic tumors in pediatric patients: case reports and literature review. J Pediatr Surg. 2021;56(12):2364-2371. doi:10.1016/j.jpedsurg.2021.02.004.
Kieran M, Bouffet E, Tabori U, et al. CNS tumours the first study of dabrafenib in pediatric patients with BRAF V600-mutant relapsed or refractory low-grade gliomas. Ann Oncol. 2016;27:vi557. doi:10.1093/annonc/mdw435.09.
Brown NF, Carter T, Kitchen N, Mulholland P. Dabrafenib and trametinib in BRAFV600E mutated glioma. CNS Oncol. 2017;6(4):291-296. doi:10.2217/cns-2017-0006.
Schreck KC, Grossman SA, Pratilas CA. BRAF mutations and the utility of RAF and MEK inhibitors in primary brain tumors. Cancers (Basel). 2019;11(9):1262. doi:10.3390/cancers11091262.
Schreck KC, Guajardo A, Lin DDM, Eberhart CG, Grossman SA. Concurrent BRAF/MEK inhibitors in BRAF V600-mutant high-grade primary brain tumors. J Natl Compr Canc Netw. 2018;16(4):343-347. doi:10.6004/jnccn.2017.7052.
Cocco E, Scaltriti M, Drilon A. NTRK fusion-positive cancers and TRK inhibitor therapy. Nat Rev Clin Oncol. 2018;15(12):731-747. doi:10.1038/s41571-018-0113-0.
Laetsch TW, DuBois SG, Mascarenhas L, et al. Larotrectinib for paediatric solid tumours harbouring NTRK gene fusions: phase 1 results from a multicentre, open-label, phase 1/2 study. Lancet Oncol. 2018;19(5):705-714. doi:10.1016/S1470-2045(18)30119-0.
Drilon A, Laetsch TW, Kummar S, et al. Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children. N Engl J Med. 2018;378(8):731-739. doi:10.1056/NEJMoa1714448.
Gounder M, Schöffski P, Jones RL, et al. Tazemetostat in advanced epithelioid sarcoma with loss of INI1/SMARCB1: an international, open-label, phase 2 basket study. Lancet Oncol. 2020;21(11):1423-1432. doi:10.1016/S1470-2045(20)30451-4.
Italiano A, Soria JC, Toulmonde M, et al. Tazemetostat, an EZH2 inhibitor, in relapsed or refractory B-cell non-Hodgkin lymphoma and advanced solid tumours: a first-in-human, open-label, phase 1 study. Lancet Oncol. 2018;19(5):649-659. doi:10.1016/S1470-2045(18)30145-1.
Morschhauser F, Tilly H, Chaidos A, et al. Tazemetostat for patients with relapsed or refractory follicular lymphoma: an open-label, single-arm, multicentre, phase 2 trial. Lancet Oncol. 2020;21(11):1433-1442. doi:10.1016/S1470-2045(20)30441-1.
Mossé YP, Fox E, Teachey DT, et al. A phase II study of alisertib in children with recurrent/refractory solid tumors or leukemia: children's oncology group phase I and pilot consortium (ADVL0921). Clin Cancer Res. 2019;25(11):3229-3238. doi:10.1158/1078-0432.CCR-18-2675.
Wetmore C, Boyett J, Li S, et al. Alisertib is active as single agent in recurrent atypical teratoid rhabdoid tumors in 4 children. Neuro Oncol. 2015;17(6):882-888. doi:10.1093/neuonc/nov017.
About the Childhood Cancer Data Initiative Molecular Characterization Initiative. National Cancer Institute. February 5, 2023, https://www.cancer.gov/research/areas/childhood/childhood-cancer-data-initiative/data-ecosystem/molecular-characterization.
Kaufman B, Shapira-Frommer R, Schmutzler RK, et al. Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation. J Clin Oncol. 2015;33(3):244-250. doi:10.1200/JCO.2014.56.2728.
Grignani G, D'Ambrosio L, Pignochino Y, et al. Trabectedin and olaparib in patients with advanced and non-resectable bone and soft-tissue sarcomas (TOMAS): an open-label, phase 1b study from the Italian Sarcoma Group. Lancet Oncol. 2018;19(10):1360-1371. doi:10.1016/S1470-2045(18)30438-8.
Gazouli I, Kyriazoglou A, Kotsantis I, et al. Systematic review of recurrent osteosarcoma systemic therapy. Cancers (Basel). 2021;13(8):1757. doi:10.3390/cancers13081757.
Schafer ES, Rau RE, Berg SL, et al. Phase 1/2 trial of talazoparib in combination with temozolomide in children and adolescents with refractory/recurrent solid tumors including Ewing sarcoma: a Children's Oncology Group Phase 1 Consortium study (ADVL1411). Pediatr Blood Cancer. 2020;67(2):e28073. doi:10.1002/pbc.28073.
Contributed Indexing:
Keywords: OmniSeq; genomic sequencing; precision medicine; solid tumors; targeted
Substance Nomenclature:
0 (Biomarkers, Tumor)
Entry Date(s):
Date Created: 20230405 Date Completed: 20230426 Latest Revision: 20230502
Update Code:
20240105
DOI:
10.1002/pbc.30324
PMID:
37017066
Czasopismo naukowe
Background: Although tumor genomic profiling has aided the advancement of targeted genetic therapy, its clinical integration remains a challenge in pediatric cancers due to lower mutation frequency and less available targeted drugs. There have been multiple novel studies examining molecular sequencing in pediatrics; however, many of these studies primarily utilized large-scale, genome-wide screening applications that limit applicable use due to the availability of testing. This study examined the institutional use of a targeted, clinically available approach to tumor genomic sequencing.
Methods: A retrospective chart review was performed on pediatric patients with solid tumors who were managed at Roswell Park Comprehensive Cancer Center and underwent molecular testing of their tumor biopsy via OmniSeq from August 2016 to July 2021. Results were reviewed for mutations considered to be "actionable" by targeted therapy. Patients with actionable mutations were further examined to evaluate treatment course, receival of targeted therapy, and clinical outcomes.
Results: We identified 64 pediatric patients consisting of 20 (31%) with CNS tumors and 44 (69%) with non-CNS tumors, ranging in age from 9 months to 21 years. Thirty-five total actionable mutations were identified amongst 27 patients (42%). Of these 27, 12 patients (44%) received at least 1 targeted drug against a respective actionable mutation, of which 6 patients (50%) achieved clinical benefit to therapy, including 1 complete response.
Conclusions: The use of a clinically focused and readily available targeted molecular sequencing panel identified actionable mutations at a comparable rate to the large-scale, less readily available sequencing panels utilized in other studies. Half of our patients who received targeted therapy achieved a complete response or clinical benefit from therapy. Although targeted therapy has a role in pediatric cancer treatment, many newer drugs require further research on their safety and efficacy.
(© 2023 Wiley Periodicals LLC.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies