Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Minimizing Temperature Bias through Reliable Temperature Determination in Gas-Solid Photothermal Catalytic Reactions.

Tytuł:
Minimizing Temperature Bias through Reliable Temperature Determination in Gas-Solid Photothermal Catalytic Reactions.
Autorzy:
Bian X; Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
Zhao Y; Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
Zhou C; Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
Zhang T; Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
Źródło:
Angewandte Chemie (International ed. in English) [Angew Chem Int Ed Engl] 2023 Jun 12; Vol. 62 (24), pp. e202219340. Date of Electronic Publication: 2023 May 04.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: <2004-> : Weinheim : Wiley-VCH
Original Publication: Weinheim/Bergstr. : New York, : Verlag Chemie ; Academic Press, c1962-
References:
.
Z. Wang, H. Song, H. Liu, J. Ye, Angew. Chem. Int. Ed. 2020, 59, 8016-8035;.
B. Xie, R. J. Wong, T. H. Tan, M. Higham, E. K. Gibson, D. Decarolis, J. Callison, K.-F. Aguey-Zinsou, M. Bowker, C. R. A. Catlow, J. Scott, R. Amal, Nat. Commun. 2020, 11, 1615;.
Y. Zhao, W. Gao, S. Li, G. R. Williams, A. H. Mahadi, D. Ma, Joule 2019, 3, 920-937.
Y. Zhao, G. I. N. Waterhouse, G. Chen, X. Xiong, L.-Z. Wu, C.-H. Tung, T. Zhang, Chem. Soc. Rev. 2019, 48, 1972-2010.
C. Mao, L. Yu, J. Li, J. Zhao, L. Zhang, Appl. Catal. B 2018, 224, 612-620.
H. Song, X. Meng, Z. Wang, Z. Wang, H. Chen, Y. Weng, F. Ichihara, M. Oshikiri, T. Kako, J. Ye, ACS Catal. 2018, 8, 7556-7565.
Y. Li, Y.-K. Peng, L. Hu, J. Zheng, D. Prabhakaran, S. Wu, T. J. Puchtler, M. Li, K.-Y. Wong, R. A. Taylor, S. C. E. Tsang, Nat. Commun. 2019, 10, 4421.
Y. Li, S. Wu, J. Wu, Q. Hu, C. Zhou, J. Mater. Chem. A 2020, 8, 8171-8194.
 .
C. Mao, H. Li, H. Gu, J. Wang, Y. Zou, G. Qi, J. Xu, F. Deng, W. Shen, J. Li, S. Liu, J. Zhao, L. Zhang, Chem 2019, 5, 2702-2717;.
H.-C. Ma, C.-C. Zhao, G.-J. Chen, Y.-B. Dong, Nat. Commun. 2019, 10, 3368;.
Y. Lu, Y. Yang, T. Zhang, Z. Ge, H. Chang, P. Xiao, Y. Xie, L. Hua, Q. Li, H. Li, B. Ma, N. Guan, Y. Ma, Y. Chen, ACS Nano 2016, 10, 10507-10515.
 .
Y. Li, J. Hao, H. Song, F. Zhang, X. Bai, X. Meng, H. Zhang, S. Wang, Y. Hu, J. Ye, Nat. Commun. 2019, 10, 2359;.
M. Cai, Z. Wu, Z. Li, L. Wang, W. Sun, A. A. Tountas, C. Li, S. Wang, K. Feng, A.-B. Xu, S. Tang, A. Tavasoli, M. Peng, W. Liu, A. S. Helmy, L. He, G. A. Ozin, X. Zhang, Nat. Energy 2021, 6, 807-814;.
L. Wang, Y. Dong, T. Yan, Z. Hu, A. A. Jelle, D. M. Meira, P. N. Duchesne, J. Y. Y. Loh, C. Qiu, E. E. Storey, Y. Xu, W. Sun, M. Ghoussoub, N. P. Kherani, A. S. Helmy, G. A. Ozin, Nat. Commun. 2020, 11, 2432.
 .
X. Zhang, X. Li, M. E. Reish, D. Zhang, N. Q. Su, Y. Gutiérrez, F. Moreno, W. Yang, H. O. Everitt, J. Liu, Nano Lett. 2018, 18, 1714-1723;.
C. Zhan, B.-W. Liu, Y.-F. Huang, S. Hu, B. Ren, M. Moskovits, Z.-Q. Tian, Nat. Commun. 2019, 10, 2671;.
L. Zhou, D. F. Swearer, C. Zhang, H. Robatjazi, H. Zhao, L. Henderson, L. Dong, P. Christopher, E. A. Carter, P. Nordlander, N. J. Halas, Science 2018, 362, 69-72;.
G. Baffou, I. Bordacchini, A. Baldi, R. Quidant, Light: Sci. Appl. 2020, 9, 108;.
D. Mateo, J. Alberoa, H. García, Energy Environ. Sci. 2017, 10, 2392-2400.
X. Li, X. Zhang, H. O. Everitt, J. Liu, Nano Lett. 2019, 19, 1706-1711.
 .
S. Luo, H. Lin, Q. Wang, X. Ren, D. Hernández-Pinilla, T. Nagao, Y. Xie, G. Yang, S. Li, H. Song, M. Oshikiri, J. Ye, J. Am. Chem. Soc. 2021, 143, 12145-12153;.
D. Mateo, J. L. Cerrillo, S. Durini, J. Gascon, Chem. Soc. Rev. 2021, 50, 2173-2210.
L. Mascaretti, A. Schirato, T. Montini, A. Alabastri, A. Naldoni, P. Fornasiero, Joule 2022, 6, 1727-1732.
S. Schwarz, B. Götzendorfer, S. Rung, C. Esen, R. Hellmann, Appl. Sci. 2021, 11, 1018.
L. Zhou, J. M. P. Martirez, J. Finzel, C. Zhang, D. F. Swearer, S. Tian, H. Robatjazi, M. Lou, L. Dong, L. Henderson, P. Christopher, E. A. Carter, P. Nordlander, N. J. Halas, Nat. Energy 2020, 5, 61-70.
 .
Y. Li, X. Bai, D. Yuan, F. Zhang, B. Li, X. San, B. Liang, S. Wang, J. Luo, G. Fu, Nat. Commun. 2022, 13, 776;.
J. Wang, Y. Li, L. Deng, N. Wei, Y. Weng, S. Dong, D. Qi, J. Qiu, X. Chen, T. Wu, Adv. Mater. 2017, 29, 1603730.
 .
L. Monchick, A. N. G. Pereira, E. A. Mason, J. Chem. Phys. 1965, 42, 3241;.
E. A. Mason, L. Monchick, J. Chem. Phys. 1962, 36, 1622.
W. Zhang, Y. Chen, G. Zhang, X. Tan, Q. Ji, Z. Wang, H. Liu, J. Qu, Angew. Chem. Int. Ed. 2021, 60, 4872-4878.
 .
S. Linic, U. Aslam, C. Boerigter, M. Morabito, Nat. Mater. 2015, 14, 567-576;.
X. Zhang, X. Li, D. Zhang, N. Q. Su, W. Yang, H. O. Everitt, J. Liu, Nat. Commun. 2017, 8, 14542.
Grant Information:
2018YFB1502002 National Key Projects for Fundamental Research and Development of China; 51825205, 52120105002, 22102202, 22088102, 52072382 National Natural Science Foundation of China; 2191002 Beijing Natural Science Foundation; DNL202016 DNL Cooperation Fund, CAS; YSBR-004 CAS Project for Young Scientists in Basic Research; BX2021323 China Postdoctoral Science Foundation
Contributed Indexing:
Keywords: Experimental Protocol; Photothermal Catalysis; Temperature Detection; Temperature Differences
Entry Date(s):
Date Created: 20230415 Date Completed: 20230604 Latest Revision: 20230604
Update Code:
20240105
DOI:
10.1002/anie.202219340
PMID:
37060210
Czasopismo naukowe
Enormous advances in photothermal catalysis have been made over the years, whereas the temperature assessment still remains controversial in the majority of photothermal catalytic systems. Herein, we methodically uncovered the phenomenon of temperature determination bias arising from prominent temperature differences in gas-solid photothermal catalytic systems, which extensively existed yet has been overlooked in most relevant cases. To avoid the interference of temperature bias, we developed a universal protocol for reliable temperature evaluation of gas-solid photothermal catalytic reactions, with emphasis on eliminating the temperature gradient and temperature fluctuation of catalyst layer via optimizing the reaction system. This work presents a functional and credible practice for temperature detection, calling attention to addressing the effects of temperature differences, and reassessing the actual temperature-based performances in gas-solid photothermal catalysis.
(© 2023 Wiley-VCH GmbH.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies