Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Penicillium citrinum, a Drought-Tolerant Endophytic Fungus Isolated from Wheat (Triticum aestivum L.) Leaves with Plant Growth-Promoting Abilities.

Tytuł:
Penicillium citrinum, a Drought-Tolerant Endophytic Fungus Isolated from Wheat (Triticum aestivum L.) Leaves with Plant Growth-Promoting Abilities.
Autorzy:
Kaur R; Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, 147004, Punjab, India.
Saxena S; Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, 147004, Punjab, India. .
Źródło:
Current microbiology [Curr Microbiol] 2023 Apr 15; Vol. 80 (5), pp. 184. Date of Electronic Publication: 2023 Apr 15.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: New York, Springer International.
MeSH Terms:
Triticum*/microbiology
Droughts*
Phylogeny ; Fungi ; Plant Leaves ; Plant Roots/microbiology
References:
Chowdhury MK, Hasan MA, Bahadur MM, Islam MR, Hakim MA, Iqbal MA, Javed T, Raza A, Shabbir R, Sorour S, Elsanafawy NE (2021) Evaluation of drought tolerance of some wheat (Triticum aestivum L.) genotypes through phenology, growth, and physiological indices. Agronomy 11(9):1792. https://doi.org/10.3390/agronomy11091792. (PMID: 10.3390/agronomy11091792)
Adhikari S, Kumari J, Jacob SR et al (2022) Landraces-potential treasure for sustainable wheat improvement. Genet Resour Crop Evol 18:1–25. https://doi.org/10.1007/s10722-021-01310-5. (PMID: 10.1007/s10722-021-01310-5)
Hu Z, Wu Z, Islam AR, You X, Liu C, Li Q, Zhang X (2021) Spatiotemporal characteristics and risk assessment of agricultural drought disasters during the winter wheat-growing season on the Huang-Huai-Hai Plain. China Theor Appl Climatol 143(3):1393–1407. (PMID: 10.1007/s00704-020-03506-8)
Cheuk A, Ouellet F, Houde M (2020) The barley stripe mosaic virus expression system reveals the wheat C2H2 zinc finger protein TaZFP1B as a key regulator of drought tolerance. BMC Plant Biol 20(1):1–34. https://doi.org/10.1186/s12870-020-02355-x. (PMID: 10.1186/s12870-020-02355-x)
Muhae-Ud-Din G, Ali MA, Naveed M et al (2018) Consortium application of endophytic bacteria and fungi improve grain yield and physiological attributes in advanced lines of bread wheat. Turkish J Agri Food Sci Technol 6(2):136–144. (PMID: 10.24925/turjaf.v6i2.136-144.1416)
Brinton J, Uauy C (2019) A reductionist approach to dissecting grain weight and yield in wheat. J Integ Plant Biol 61(3):337–358. https://doi.org/10.1111/jipb.12741. (PMID: 10.1111/jipb.12741)
Al Atalah BF, Mohsen WI, Kountar EK, Albiski FI, Murshed RF (2019) Evaluating the tolerance of some wheat varieties towards water stress induced by sorbitol. Palestinian J Technol Appl Sci. https://doi.org/10.5281/zenodo.2582903.
Ali S, Khan N (2021) Delineation of mechanistic approaches employed by plant growth promoting microorganisms for improving drought stress tolerance in plants. Microbiol Res 1(249):126771. https://doi.org/10.1016/j.micres.2021.126771. (PMID: 10.1016/j.micres.2021.126771)
de Rossi S, di Marco G, Bruno L, Gismondi A, Canini A (2020) Investigating the drought and salinity effect on the redox components of sulla coronaria (L) medik. Antioxidants 10(7):1048. https://doi.org/10.3390/antiox10071048. (PMID: 10.3390/antiox10071048)
Bilal S, Shahzad R, Imran M, Jan R, Kim KM, Lee IJ (2020) Synergistic association of endophytic fungi enhances Glycine max L. resilience to combined abiotic stresses: heavy metals, high temperature and drought stress. Ind Crop Prod. https://doi.org/10.1016/j.indcrop.2019.111931. (PMID: 10.1016/j.indcrop.2019.111931)
Razavizadeh R, Farahzadianpoor F, Adabavazeh F, Komatsu S (2019) Physiological and morphological analyses of Thymus vulgaris L. in vitro cultures under polyethylene glycol (PEG)-induced osmotic stress. In Vitro Cell Dev Biol—Plant 55(3):342–357. https://doi.org/10.1007/s11627-019-09979-1. (PMID: 10.1007/s11627-019-09979-1)
Chand K, Shah S, Sharma J, Paudel MR, Pant B (2020) Isolation, characterisation, and plant growth-promoting activities of endophytic fungi from a wild orchid Vanda cristata. Plant Signal Behav 15(5):1744294. https://doi.org/10.1080/15592324.2020.1744294. (PMID: 10.1080/15592324.2020.1744294322088927238887)
Tandon A, Fatima T, Anshu, et al (2020) Phosphate solubilisation by Trichoderma koningiopsis (NBRI-PR5) under abiotic stress conditions. J King Saud Uni Sci 32(1):791–798. https://doi.org/10.1016/j.jksus.2019.02.001. (PMID: 10.1016/j.jksus.2019.02.001)
Khatabi B, Gharechahi J, Ghaffari MR et al (2019) Plant–microbe symbiosis: what has proteomics taught us? Proteomics. https://doi.org/10.1002/pmic.201800105. (PMID: 10.1002/pmic.20180010531218790)
Malinich EA, Bauer CE (2018) The plant growth promoting bacterium Azospirillum brasilense is vertically transmitted in Phaseolus vulgaris (common bean). Symbiosis 76(2):97–108. https://doi.org/10.1007/s13199-018-0539-2. (PMID: 10.1007/s13199-018-0539-2)
Salwan R, Sharma V (2020) Molecular and biotechnological aspects of secondary metabolites in actinobacteria. Microbiol Res 231:126374. https://doi.org/10.1016/j.micres.2019.126374. (PMID: 10.1016/j.micres.2019.12637431756597)
Anwar S, Khalilzadeh R, Khan S et al (2021) Mitigation of drought stress and yield improvement in wheat by zinc foliar spray relates to enhanced water use efficiency and zinc contents. Int J Plant Prod 15(3):377–389. https://doi.org/10.1007/s42106-021-00136-6. (PMID: 10.1007/s42106-021-00136-6)
Kumar Panda S. Endophytic Fungi with Great Promises: A Review. www.japer.in.
Maulana AF, Turjaman M, Sato T, Hashimoto Y, Cheng W, Tawaraya K (2018) Isolation of endophytic fungi from tropical forest in Indonesia. Symbiosis 76(2):151–162. https://doi.org/10.1007/s13199-018-0542-7. (PMID: 10.1007/s13199-018-0542-7)
Mehmood A, Hussain A, Irshad M, Hamayun M, Iqbal A, Khan N (2019) In vitro production of IAA by endophytic fungus Aspergillus awamori and its growth promoting activities in Zea mays. Symbiosis 77(3):225–235. https://doi.org/10.1007/s13199-018-0583-y. (PMID: 10.1007/s13199-018-0583-y)
Ripa FA, Cao WD, Tong S, Sun JG (2019) Assessment of plant growth promoting and abiotic stress tolerance properties of wheat endophytic fungi. BioMed Res Int. https://doi.org/10.1155/2019/6105865. (PMID: 10.1155/2019/6105865310323536457323)
Bilal L, Asaf S, Hamayun M et al (2018) Plant growth promoting endophytic fungi Aspergillus fumigatus TS1 and Fusarium proliferatum BRL1 produce gibberellins and regulates plant endogenous hormones. Symbiosis 76(2):117–127. https://doi.org/10.1007/s13199-018-0545-4. (PMID: 10.1007/s13199-018-0545-4)
Adhikari P, Pandey A (2019) Phosphate solubilisation potential of endophytic fungi isolated from Taxus wallichiana Zucc. roots. Rhizosphere 9:2–9. https://doi.org/10.1016/j.rhisph.2018.11.002. (PMID: 10.1016/j.rhisph.2018.11.002)
Gontia-Mishra I, Sapre S, Tiwari S (2017) Zinc solubilising bacteria from the rhizosphere of rice as a prospective modulator of zinc biofortification in rice. Rhizosphere 3:185–190. https://doi.org/10.1016/j.rhisph.2017.04.013. (PMID: 10.1016/j.rhisph.2017.04.013)
Sopalun K, Laosripaiboon W, Wachirachaikarn A, Iamtham S (2021) Biological potential and chemical composition of bioactive compounds from endophytic fungi associated with thai mangrove plants. South Afr J Bot 141:66–76. https://doi.org/10.1016/j.sajb.2021.04.031. (PMID: 10.1016/j.sajb.2021.04.031)
Jouda JB, Tamokou J, Mbazoa CD et al (2016) Antibacterial and cytotoxic cytochalasins from the endophytic fungus Phomopsis sp. harboured in Garcinia kola (Heckel) nut. BMC Complement Altern Med. https://doi.org/10.1186/s12906-016-1454-9. (PMID: 10.1186/s12906-016-1454-9278425365109658)
Qiang X, Ding J, Lin W et al (2019) Alleviation of the detrimental effect of water deficit on wheat (Triticum aestivum L.) growth by an indole acetic acid-producing endophytic fungus. Plant Soil 439(1):373–391. https://doi.org/10.1007/s11104-019-04028-7. (PMID: 10.1007/s11104-019-04028-7)
Gond SK, Verma VC, Kumar A et al (2007) Study of endophytic fungal community from different parts of Aegle marmelos Correae (Rutaceae) from Varanasi (India)’. World J Microbiol Biotechnol. https://doi.org/10.1007/s11274-007-9375-x. (PMID: 10.1007/s11274-007-9375-x)
Samarakoon MC, Thongbai B, Hyde KD et al (2020) Elucidation of the life cycle of the endophytic genus Muscodor and its transfer to Induratia in Induratiaceae fam. Nov., based on a polyphasic taxonomic approach. Fungal Divers. https://doi.org/10.1007/s13225-020-00443-9. (PMID: 10.1007/s13225-020-00443-9)
Li J, Zheng H, Yu ZF et al (2022) Colletotrichum litangense sp. Nov., isolated as an endophyte of Hippuris vulgaris, an aquatic plant in Sichuan. China. Curr Microbiol 79(6):1–10. https://doi.org/10.1007/s00284-022-02846-0. (PMID: 10.1007/s00284-022-02846-0)
Nuangmek W, Aiduang W, Kumla J et al (2021) Evaluation of a newly identified endophytic fungus, Trichoderma phayaoense, for plant growth promotion and biological control of gummy stem blight and wilt of muskmelon. Front microbiol. https://doi.org/10.3389/fmicb.2021.634772. (PMID: 10.3389/fmicb.2021.634772344568888397495)
Arefi M, Karparvarfard SH, Azimi-Nejadian H, Naderi-Boldaji M (2022) Draught force prediction from soil relative density and relative water content for a non-winged chisel blade using finite element modelling. J Terramechanics 100:73–80. https://doi.org/10.1016/j.jterra.2022.01.001. (PMID: 10.1016/j.jterra.2022.01.001)
Punam K, Chandra S, Rajpoot S, Maurya M, Kumar R, Ghosh UK (2021) Effect of post-harvest treatments on quality attributes like total soluble solids, total sugar and reducing sugar of langra mangoes (Mangifera indica L.) during storage. Int J Chem Stud. https://doi.org/10.22271/chemi.2021.v9.i1d.11581. (PMID: 10.22271/chemi.2021.v9.i1d.11581)
Pan X, Qin Y, Yuan Z (2018) Potential of a halophyte-associated endophytic fungus for sustaining Chinese white poplar growth under salinity. Symbiosis 76(2):109–116. https://doi.org/10.1007/s13199-018-0541-8. (PMID: 10.1007/s13199-018-0541-8)
Singh RP, Jha P, Jha PN (2017) Bio-inoculation of plant growth-promoting rhizobacterium Enterobacter cloacae ZNP-3 increased resistance against salt and temperature stresses in wheat plant (Triticum aestivum L.). J Plant Growth Regul 36(3):783–798. https://doi.org/10.1007/s00344-017-9683-9. (PMID: 10.1007/s00344-017-9683-9)
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. https://doi.org/10.1093/molbev/mst197. (PMID: 10.1093/molbev/mst197241321223840312)
Gul SL, Moon YS, Hamayun M, Khan SA, Iqbal A, Khan MA, Hussain A, Shafique M, Kim YH, Ali S (2022) Porostereum spadiceum-AGH786 regulates the growth and metabolites production in Triticum aestivum L. Under Salt Stress Curr Microbiol 79(6):1–1.
Sun Y, Wang Q, Lu X, Okane I, Kakishima M (2012) Endophytic fungal community in stems and leaves of plants from desert areas in China. Mycol Prog 11(3):781–790. https://doi.org/10.1007/s11557-011-0790-x. (PMID: 10.1007/s11557-011-0790-x)
Larran S, Perelló A, Simón MR, Moreno V (2007) The endophytic fungi from wheat (Triticum aestivum L.). World J Microbiol Biotechnol 23(4):565–572. https://doi.org/10.1007/s11274-006-9266-6. (PMID: 10.1007/s11274-006-9266-6)
Zahra N, Wahid A, Hafeez MB et al (2021) Plant growth promoters alleviate oxidative damages and improve the growth of milk thistle (Silybum marianum L.) under salinity stress. J Plant Growth Regul 20:1–26. https://doi.org/10.1007/s00344-021-10498-w. (PMID: 10.1007/s00344-021-10498-w)
Sati SC, Pant P (2019) evaluation of phosphate solubilisation by root endophytic aquatic hyphomycete Tetracladium setigerum. Symbiosis 77(2):141–145. https://doi.org/10.1007/s13199-018-0575-y. (PMID: 10.1007/s13199-018-0575-y)
Faran M, Farooq M, Rehman A et al (2019) High intrinsic seed Zn concentration improves abiotic stress tolerance in wheat. Plant Soil 437(1):195–213. https://doi.org/10.1007/s11104-019-03977-3. (PMID: 10.1007/s11104-019-03977-3)
Pandya ND, Desai PV, Jadhav HP, Sayyed RZ (2018) Plant growth promoting potential of Aspergillus sp. NPF7, isolated from wheat rhizosphere in South Gujarat. India. Environ Sustain 1(3):245–252. https://doi.org/10.1007/s42398-018-0025-z. (PMID: 10.1007/s42398-018-0025-z)
Grant Information:
09/677(0041)/2019-EMR1 Human Resource Development Group
SCR Organism:
Penicillium citrinum
Entry Date(s):
Date Created: 20230415 Date Completed: 20230418 Latest Revision: 20230418
Update Code:
20240105
DOI:
10.1007/s00284-023-03283-3
PMID:
37061641
Czasopismo naukowe
Endophytic fungi have recently garnered significant attention as next-generation bioinoculants due to their plausible role in ameliorating abiotic and biotic stresses. This adaptation is achieved via various signalling molecules and mechanisms established by these symbionts with their hosts. The present study screened 61 endophytic isolates of culturable mycobiome associated with wheat variety PBW725 during their crop cycle. Three endophytic isolates exhibited a minimum reduction in their growth and maximum biomass production during the drought stress developed using polyethylene glycol 6000. Further, these isolates also exhibited plant growth promoting properties by virtue of the production of indole acetic acid, gibberellic acid and ammonia. These isolates also exhibited the propensity to solubilise phosphate and zinc, produce siderophores and further exhibit extracellular enzymatic activities, contributing to plants' adaptability to abiotic stresses. The best isolate amongst the three was #5TAKL-3a, identified as Penicillium citrinum based on multilocus phylogenetic analysis. The isolate as a bioinoculant enhances various biochemical and physiological properties in planta. Hence our studies indicate that Penicillium citrinum #5TAKL-3a is a potential candidate bioinoculant for field trials to improve the adaptability of the wheat plant under drought stress.
(© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies