Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Extraction of Eucommia ulmoides gum and microbial lipid from Eucommia ulmoides Oliver leaves by dilute acid hydrolysis.

Tytuł:
Extraction of Eucommia ulmoides gum and microbial lipid from Eucommia ulmoides Oliver leaves by dilute acid hydrolysis.
Autorzy:
Gao R; Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou, 510640, People's Republic of China.; Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, People's Republic of China.; Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, People's Republic of China.; R&D Center of Xuyi Attapulgite Applied Technology, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Xuyi, 211700, People's Republic of China.
Zhang H; Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou, 510640, People's Republic of China. .; Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, People's Republic of China. .; Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, People's Republic of China. .; R&D Center of Xuyi Attapulgite Applied Technology, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Xuyi, 211700, People's Republic of China. .
Li B; Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou, 510640, People's Republic of China.; Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, People's Republic of China.; Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, People's Republic of China.; R&D Center of Xuyi Attapulgite Applied Technology, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Xuyi, 211700, People's Republic of China.; University of Chinese Academy of Sciences, Beijing, 100039, People's Republic of China.
Guo H; Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou, 510640, People's Republic of China.; Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, People's Republic of China.; Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, People's Republic of China.; R&D Center of Xuyi Attapulgite Applied Technology, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Xuyi, 211700, People's Republic of China.
Li H; Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou, 510640, People's Republic of China.; Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, People's Republic of China.; Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, People's Republic of China.; R&D Center of Xuyi Attapulgite Applied Technology, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Xuyi, 211700, People's Republic of China.
Xiong L; Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou, 510640, People's Republic of China.; Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, People's Republic of China.; Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, People's Republic of China.; R&D Center of Xuyi Attapulgite Applied Technology, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Xuyi, 211700, People's Republic of China.
Chen X; Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou, 510640, People's Republic of China. cxd_.; Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, People's Republic of China. cxd_.; Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, People's Republic of China. cxd_.; R&D Center of Xuyi Attapulgite Applied Technology, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Xuyi, 211700, People's Republic of China. cxd_.
Źródło:
Biotechnology letters [Biotechnol Lett] 2023 Jun; Vol. 45 (5-6), pp. 619-628. Date of Electronic Publication: 2023 Apr 18.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: 1999- : Dordrecht : Kluwer Academic Publishers
Original Publication: [Kew, Eng., Science and Technology Letters]
MeSH Terms:
Eucommiaceae*/chemistry
Hydrolysis ; Spectroscopy, Fourier Transform Infrared ; Acetic Acid ; Plant Leaves/chemistry ; Carbon/analysis
References:
Besson M, Gallezot P, Pinel C (2014) Conversion of biomass into chemicals over metal catalysts. Chem Rev 114:1827–1870. (PMID: 10.1021/cr400226924083630)
Chen X-F, Huang C, Yang X-Y, Xiong L, Chen X-D, Ma L-L (2013) Evaluating the effect of medium composition and fermentation condition on the microbial oil production by Trichosporon cutaneum on corncob acid hydrolysate. Bioresour Technol 143:18–24. (PMID: 10.1016/j.biortech.2013.05.10223774292)
Evans R, Newman RH, Roick UC, Suckling ID, Wallis AFA (1995) Changes in cellulose crystallinity during kraft pulping. comparison of infrared, X-ray diffraction and solid state NMR results. Holzforschung 49:498–504. (PMID: 10.1515/hfsg.1995.49.6.498)
Faix O (1991) Classfication of lignins from different botanical origins by FT-IR spectroscopy. Holzforschung 45:21–27. (PMID: 10.1515/hfsg.1991.45.s1.21)
Guihua L, Yongkang Z, Meifang X, Xinjun P (2010) Study on extracting Eucommia ulmoides Oliv Gum by Cellulase Pretreatment. Chem Indus for Prod 30:77–82.
Huang C, Yang X-Y, Xiong L, Guo H-J, Luo J, Wang B, Zhang H-R, Lin X-Q, Chen X-D (2015) Utilization of corncob acid hydrolysate for bacterial cellulose production by Gluconacetobacter xylinus. Appl Biochem Biotechnol 175:1678–1688. (PMID: 10.1007/s12010-014-1407-z25422061)
Huang C, Guo H-J, Zhang H-R, Xiong L, Li H-L, Chen X-D (2019) A new concept for total components conversion of lignocellulosic biomass: a promising direction for clean and sustainable production in its bio-refinery. J Chem Technol Biotechnol 94:2416–2424. (PMID: 10.1002/jctb.6086)
Jiang H, Li J, Chen L, Wang Z (2020) Adsorption and desorption of chlorogenic acid by macroporous adsorbent resins during extraction of Eucommia ulmoides leaves. IndCrops Prod 149:112336. (PMID: 10.1016/j.indcrop.2020.112336)
Jinjin W, Donglin X, Xiang C, Xiyu Q, Junhua Z (2019) Effect of steam explosion on extraction of bioactive components and gutta-percha from barks of Eucommia ulmoides Oliver. Chem Indus for Prod 39:88–94.
Kang H, Yao L, Li Y, Hu X, Yang F, Fang Q, Zhang L (2018) Highly toughened polylactide by renewable Eucommia ulmoides gum. J Appl Polym Sci 135:46017. (PMID: 10.1002/app.46017)
Li X, Xiong L, Chen X, Huang C, Chen X, Ma L (2015) Effects of acetic acid on growth and lipid production by Cryptococcus albidus. J Am Oil Chem Soc 92:1113–1118. (PMID: 10.1007/s11746-015-2685-5)
Ling, X., Xuejun, Z., Chun, J., Yangjie, H., Han, T. (2021) Current Situation in Extraction and Large-scale Production of Eucommia ulmoides Gum and Its Development Issues. Biomass Chemical Engineering 55.
Sun Q, Zhao X, Wang D, Dong J, She D, Peng P (2018) Preparation and characterization of nanocrystalline cellulose/Eucommia ulmoides gum nanocomposite film. Carbohyd Polym 181:825–832. (PMID: 10.1016/j.carbpol.2017.11.070)
Wei X-N, Peng P, Peng F, Dong J (2021) Natural polymer eucommia ulmoides rubber: a novel material. J Agric Food Chem 69:3797–3821. (PMID: 10.1021/acs.jafc.0c0756033761246)
Xia L, Gao H, Geng J (2019) Facile fabrication of foamed natural Eucommia ulmoides gum composites with heat-triggered shape memory behavior. Polym Compos 40:3075–3083. (PMID: 10.1002/pc.25152)
Xu J, Xie X, Wang J, Jiang J (2016) Directional liquefaction coupling fractionation of lignocellulosic biomass for platform chemicals. Green Chem 18:3124–3138. (PMID: 10.1039/C5GC03070F)
Yang F, Liu Q, Li X, Yao L, Fang Q (2017) Epoxidation of Eucommia ulmoides gum by emulsion process and the performance of its vulcanizates. Polym Bull 74:3657–3672. (PMID: 10.1007/s00289-017-1912-7)
Yang B, Zhao H, Zhang C, Zhang X, Dong X, Liu G, Wang D (2023) The role of crystallization and crosslinking in the hysteresis loss of vulcanized Eucommia ulmoides gum. CrystEngComm 25:567–578. (PMID: 10.1039/D2CE01247B)
Yao K, Nie H, Liang Y, Qiu D, He A (2015) Polymorphic crystallization behaviors in cis-1,4-polyisoprene/trans-1,4-polyisoprene blends. Polymer 80:259–264. (PMID: 10.1016/j.polymer.2015.10.063)
Zhang J, Xue Z (2011) A comparative study on the properties of Eucommia ulmoides gum and synthetic trans-1,4-polyisoprene. Polym Testing 30:753–759. (PMID: 10.1016/j.polymertesting.2011.06.010)
Zhang H, Guo H, Wang B, Shi S, Xiong L, Chen X (2016) Synthesis and characterization of quaternized bacterial cellulose prepared in homogeneous aqueous solution. Carbohyd Polym 136:171–176. (PMID: 10.1016/j.carbpol.2015.09.029)
Grant Information:
202201010229 Guangzhou Science and Technology Planning Project; 2021114 Henan province-CAS scientific and technical payoffs transformation project; 2019B110209003 Key Area R&D Project of Guangdong Province; 52006229 Project of National Natural Science Foundation of China; 51876207 Project of National Natural Science Foundation of China
Contributed Indexing:
Keywords: Dilute acid hydrolysis; Eucommia ulmoides gum; Eucommia ulmoides leaves
Substance Nomenclature:
Q40Q9N063P (Acetic Acid)
7440-44-0 (Carbon)
SCR Organism:
Rhodotorula toruloides
Entry Date(s):
Date Created: 20230418 Date Completed: 20230505 Latest Revision: 20230505
Update Code:
20240105
DOI:
10.1007/s10529-023-03377-9
PMID:
37071384
Czasopismo naukowe
Objectives: Eucommia ulmoides gum (EUG) is an important natural biomass rubber material, which is usually extracted from Eucommia ulmoides Oliver (EUO). In the extraction process of EUG, pretreatment is the most important step which can efficiently damage EUG-containing cell wall and improve yield of EUG.
Results: The FT-IR, XRD, DSC and TG results showed that the thermal properties and structure of the EUG from the dilute acids hydrolysis residue are similar with that of the EUG directly extracted from EUO leaves (EUGD). EUO leaves hydrolysis with AA had the highest EUG yield (16.1%), which was higher than the EUGD yield (9.5%). In the case of the EUO leaves hydrolysis with 0.33 ~ 0.67 wt% of acetic acid (AA), the total sugar was stable in the range of 26.82-27.67 g/L. Furthermore, the EUO leaves acid hydrolysate (AA as reagent) was used as carbon sources for lipid-producing fermentation by Rhodosporidium toruloides. After 120 h of fermentation, the biomass, lipid content and lipid yield were 12.13 g/L, 30.16% and 3.64 g/L, respectively. The fermentation results indicated organic acids were no toxic for Rhodosporidium toruloides and the AA also could be used as carbon source for fermentation.
(© 2023. The Author(s), under exclusive licence to Springer Nature B.V.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies