Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

A Scalable High-Throughput Isoelectric Fractionation Platform for Extracellular Nanocarriers: Comprehensive and Bias-Free Isolation of Ribonucleoproteins from Plasma, Urine, and Saliva.

Tytuł:
A Scalable High-Throughput Isoelectric Fractionation Platform for Extracellular Nanocarriers: Comprehensive and Bias-Free Isolation of Ribonucleoproteins from Plasma, Urine, and Saliva.
Autorzy:
Sharma H; Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States.
Yadav V; Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States.
D'Souza-Schorey C; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana 46556, United States.; Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States.
Go DB; Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States.; Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States.
Senapati S; Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States.
Chang HC; Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States.; Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States.; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana 46556, United States.
Źródło:
ACS nano [ACS Nano] 2023 May 23; Vol. 17 (10), pp. 9388-9404. Date of Electronic Publication: 2023 Apr 18.
Typ publikacji:
Journal Article; Research Support, N.I.H., Extramural
Język:
English
Imprint Name(s):
Original Publication: Washington D.C. : American Chemical Society
MeSH Terms:
Body Fluids*/chemistry
Extracellular Vesicles*/metabolism
Saliva/metabolism ; Ribonucleoproteins ; Lipoproteins/analysis ; Lipoproteins/metabolism
References:
Cell. 2019 Apr 4;177(2):231-242. (PMID: 30951667)
Cell Rep. 2019 Apr 16;27(3):940-954.e6. (PMID: 30956133)
Proc Natl Acad Sci U S A. 2011 Mar 22;108(12):5003-8. (PMID: 21383194)
Lancet. 2014 Aug 16;384(9943):618-625. (PMID: 25131981)
Chem Commun (Camb). 2013 Jan 30;49(9):904-6. (PMID: 23247896)
Biomicrofluidics. 2011 Dec;5(4):46502-465028. (PMID: 22121407)
Sci Rep. 2016 Apr 18;6:24316. (PMID: 27087061)
Methods Mol Biol. 2018;1740:139-153. (PMID: 29388141)
Anal Chem. 2007 Nov 1;79(21):8190-8. (PMID: 17902700)
Nat Rev Genet. 2021 Mar;22(3):185-198. (PMID: 33235359)
Nat Cell Biol. 2008 Dec;10(12):1470-6. (PMID: 19011622)
Nat Rev Genet. 2021 Jul;22(7):448-458. (PMID: 33824487)
Biochimie. 2019 Sep;164:22-36. (PMID: 31108123)
Trends Biochem Sci. 2020 Sep;45(9):764-778. (PMID: 32475683)
J Extracell Vesicles. 2017 Mar 7;6(1):1286095. (PMID: 28326170)
J Chromatogr A. 2018 Aug 03;1561:83-91. (PMID: 29843946)
Nat Cell Biol. 2011 Apr;13(4):423-33. (PMID: 21423178)
J Extracell Vesicles. 2015 Aug 28;4:27493. (PMID: 26320938)
Nat Rev Clin Oncol. 2018 Oct;15(10):617-638. (PMID: 29795272)
Circ Res. 2016 Feb 5;118(3):469-79. (PMID: 26846641)
Anal Chem. 2019 May 21;91(10):6514-6521. (PMID: 31035752)
Sci Rep. 2021 Aug 9;11(1):16086. (PMID: 34373542)
Nat Methods. 2019 Dec;16(12):1226-1232. (PMID: 31570887)
Lab Invest. 2016 Jul;96(7):708-18. (PMID: 27183204)
Nat Protoc. 2019 Apr;14(4):1027-1053. (PMID: 30833697)
Nat Cell Biol. 2018 Mar;20(3):332-343. (PMID: 29459780)
Proc Natl Acad Sci U S A. 2020 Sep 29;117(39):24213-24223. (PMID: 32929008)
Cell. 2018 Jan 25;172(3):590-604.e13. (PMID: 29373831)
Cell. 2015 Mar 26;161(1):161-172. (PMID: 25815993)
Nat Methods. 2019 Mar;16(3):225-234. (PMID: 30804549)
Lab Chip. 2019 Mar 27;19(7):1174-1182. (PMID: 30806400)
Nat Rev Drug Discov. 2005 Mar;4(3):193-205. (PMID: 15738977)
Acta Pharmacol Sin. 2017 Sep;38(9):1205-1235. (PMID: 28713158)
Nat Mater. 2020 Aug;19(8):810-812. (PMID: 32704139)
J Extracell Vesicles. 2013 Dec 31;2:. (PMID: 24455109)
Sci Rep. 2016 Sep 19;6:33641. (PMID: 27640641)
Nat Rev Neurol. 2016 Jun;12(6):346-57. (PMID: 27174238)
Cell Rep. 2019 Jun 25;27(13):3972-3987.e6. (PMID: 31242427)
Methods Mol Biol. 2018;1740:1-15. (PMID: 29388131)
Nat Nanotechnol. 2016 Nov;11(11):936-940. (PMID: 27479757)
J Extracell Vesicles. 2018 Dec 12;8(1):1552059. (PMID: 30559953)
Expert Opin Drug Deliv. 2014 Feb;11(2):231-47. (PMID: 24313310)
Biomicrofluidics. 2014 Jun 11;8(3):034111. (PMID: 25379071)
Acta Pharmacol Sin. 2017 Jun;38(6):754-763. (PMID: 28392567)
Nat Commun. 2017 Oct 26;8(1):1145. (PMID: 29074968)
Sci Rep. 2021 Apr 13;11(1):8034. (PMID: 33850163)
J Lipid Res. 2000 Feb;41(2):305-18. (PMID: 10681415)
J Cancer Prev. 2017 Dec;22(4):203-210. (PMID: 29302577)
Nat Cell Biol. 2019 Jan;21(1):9-17. (PMID: 30602770)
Aging Cell. 2020 Apr;19(4):e13136. (PMID: 32170904)
Nat Methods. 2021 Feb;18(2):212-218. (PMID: 33432243)
J Am Coll Nutr. 2008 Feb;27(1):1-5. (PMID: 18460475)
Science. 1950 Feb 17;111(2877):166-71. (PMID: 15403115)
Cells. 2019 Jan 29;8(2):. (PMID: 30699987)
JCI Insight. 2018 Apr 5;3(7):. (PMID: 29618663)
Prostate Cancer Prostatic Dis. 2017 Sep;20(3):251-258. (PMID: 28374743)
APL Bioeng. 2019 Mar 27;3(1):011503. (PMID: 31069333)
Anal Chem. 2020 Jun 2;92(11):7493-7499. (PMID: 32233393)
Biochim Biophys Acta Mol Cell Res. 2021 Jul;1868(8):119058. (PMID: 33989700)
J Extracell Vesicles. 2015 Aug 28;4:27495. (PMID: 26320940)
Nat Rev Mol Cell Biol. 2018 May;19(5):327-341. (PMID: 29339797)
Nat Cell Biol. 2021 Dec;23(12):1240-1254. (PMID: 34887515)
Cancers (Basel). 2020 Sep 21;12(9):. (PMID: 32967226)
Lab Chip. 2014 Jun 7;14(11):1891-900. (PMID: 24722878)
Grant Information:
UG3 CA241684 United States CA NCI NIH HHS; UH3 CA241684 United States CA NCI NIH HHS
Contributed Indexing:
Keywords: exRNA nanocarriers; fractionation; isoelectric point; lipoproteins; pH; plasma; ribonucleoproteins
Substance Nomenclature:
0 (Ribonucleoproteins)
0 (Lipoproteins)
Entry Date(s):
Date Created: 20230418 Date Completed: 20230524 Latest Revision: 20240124
Update Code:
20240124
PubMed Central ID:
PMC10756736
DOI:
10.1021/acsnano.3c01340
PMID:
37071723
Czasopismo naukowe
Extracellular nanocarriers (extracellular vesicles (EVs), lipoproteins, and ribonucleoproteins) of protein and nucleic acids mediate intercellular communication and are clinically adaptable as distinct circulating biomarkers. However, the overlapping size and density of the nanocarriers have so far prevented their efficient physical fractionation, thus impeding independent downstream molecular assays. Here, we report a bias-free high-throughput and high-yield continuous isoelectric fractionation nanocarrier fractionation technique based on their distinct isoelectric points. This nanocarrier fractionation platform is enabled by a robust and tunable linear pH profile provided by water-splitting at a bipolar membrane and stabilized by flow without ampholytes. The linear pH profile that allows easy tuning is a result of rapid equilibration of the water dissociation reaction and stabilization by flow. The platform is automated with a machine learning procedure to allow recalibration for different physiological fluids and nanocarriers. The optimized technique has a resolution of 0.3 ΔpI, sufficient to separate all nanocarriers and even subclasses of nanocarriers. Its performance is then evaluated with several biofluids, including plasma, urine, and saliva samples. Comprehensive, high-purity (plasma: >93%, urine: >95% and saliva: >97%), high-yield (plasma: >78%, urine: >87% and saliva: >96%), and probe-free isolation of ribonucleoproteins in 0.75 mL samples of various biofluids in 30 min is demonstrated, significantly outperforming affinity-based and highly biased gold standards having low yield and day-long protocols. Binary fractionation of EVs and different lipoproteins is also achieved with similar performance.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies