Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Causal inference in survival analysis using longitudinal observational data: Sequential trials and marginal structural models.

Tytuł:
Causal inference in survival analysis using longitudinal observational data: Sequential trials and marginal structural models.
Autorzy:
Keogh RH; Department of Medical Statistics and Centre for Statistical Methodology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
Gran JM; Oslo Centre for Biostatistics and Epidemiology, Department of Biostatistics, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1122 Blindern, Oslo, 0317, Norway.
Seaman SR; MRC Biostatistics Unit, University of Cambridge, East Forvie Building, Forvie Site, Robinson Way, Cambridge, CB2 0SR, UK.
Davies G; Population, Policy and Practice Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, WC1N 1EH, London, UK.
Vansteelandt S; Department of Medical Statistics and Centre for Statistical Methodology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.; Department of Applied Mathematics, Computer Science and Statistics, Ghent University, 9000, Ghent, Belgium.
Źródło:
Statistics in medicine [Stat Med] 2023 Jun 15; Vol. 42 (13), pp. 2191-2225. Date of Electronic Publication: 2023 Apr 22.
Typ publikacji:
Journal Article; Observational Study; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: Chichester ; New York : Wiley, c1982-
MeSH Terms:
Models, Statistical*
Humans ; Causality ; Models, Structural ; Probability ; Survival Analysis ; Treatment Outcome ; Longitudinal Studies
References:
Int J Epidemiol. 2020 Oct 1;49(5):1719-1729. (PMID: 32386426)
Stat Methods Med Res. 2019 Jan;28(1):321-322. (PMID: 30392452)
Stat Methods Med Res. 2013 Feb;22(1):70-96. (PMID: 22016461)
J Cyst Fibros. 2018 Mar;17(2):218-227. (PMID: 29311001)
Int J Epidemiol. 2016 Dec 1;45(6):2049-2051. (PMID: 27063602)
Stat Methods Med Res. 2018 Jun;27(6):1709-1722. (PMID: 27659168)
J Am Stat Assoc. 2019;114(526):938-947. (PMID: 31564760)
Lifetime Data Anal. 2015 Oct;21(4):579-93. (PMID: 26100005)
Biometrics. 2006 Sep;62(3):910-7. (PMID: 16984335)
Epidemiology. 2000 Sep;11(5):561-70. (PMID: 10955409)
Stat Med. 2020 Jul 30;39(17):2350-2370. (PMID: 32242973)
Biom J. 2021 Mar;63(3):528-557. (PMID: 33314251)
Int J Epidemiol. 2015 Jun;44(3):1027-37. (PMID: 25969504)
Stat Med. 1989 Aug;8(8):907-25. (PMID: 2678347)
Stat Med. 2010 Nov 20;29(26):2757-68. (PMID: 20803557)
Biometrics. 2001 Dec;57(4):1030-8. (PMID: 11764241)
Epidemiology. 2010 Jan;21(1):13-5. (PMID: 20010207)
Cochrane Database Syst Rev. 2018 Sep 06;9:CD001127. (PMID: 30187450)
Biometrics. 2020 Jun;76(2):472-483. (PMID: 31562652)
BMJ. 2018 Feb 1;360:k182. (PMID: 29419381)
Epidemiology. 2009 May;20(3):424-30. (PMID: 19333126)
Biologics. 2008 Dec;2(4):611-7. (PMID: 19707442)
BMC Med Res Methodol. 2013 Dec 07;13:152. (PMID: 24314264)
Chest. 2006 Nov;130(5):1441-7. (PMID: 17099022)
Epidemiology. 2009 Nov;20(6):880-3. (PMID: 19829187)
Stat Med. 2013 Apr 30;32(9):1584-618. (PMID: 23208861)
Am J Epidemiol. 2007 Nov 1;166(9):985-93. (PMID: 17875580)
Am J Epidemiol. 2007 Nov 1;166(9):1003-1004. (PMID: 21399753)
Am J Epidemiol. 2016 Apr 15;183(8):758-64. (PMID: 26994063)
Biom J. 2021 Oct;63(7):1526-1541. (PMID: 33983641)
Eur J Epidemiol. 2017 Jun;32(6):495-500. (PMID: 28748498)
Int J Epidemiol. 2018 Feb 1;47(1):9-10e. (PMID: 29040601)
Pediatr Pulmonol. 2012 Jan;47(1):44-52. (PMID: 21815282)
Stat Med. 2011 Oct 30;30(24):2947-58. (PMID: 21800346)
Epidemiology. 2008 Nov;19(6):766-79. (PMID: 18854702)
N Engl J Med. 2005 May 12;352(19):1992-2001. (PMID: 15888700)
Epidemiology. 2014 May;25(3):418-26. (PMID: 24713881)
Stat Med. 2018 Jul 10;37(15):2367-2390. (PMID: 29671915)
Stat Med. 2023 Jun 15;42(13):2191-2225. (PMID: 37086186)
J Cyst Fibros. 2019 Jan;18(1):110-117. (PMID: 30172681)
Clin Infect Dis. 2017 Jun 01;64(11):1591-1596. (PMID: 28498892)
Eur Respir J. 2007 Mar;29(3):522-6. (PMID: 17182652)
Int J Epidemiol. 2019 Feb 1;48(1):254-265. (PMID: 30358847)
J Clin Epidemiol. 2016 Nov;79:70-75. (PMID: 27237061)
Biometrics. 2017 Mar;73(1):134-144. (PMID: 27192660)
Stat Med. 1990 Dec;9(12):1501-15. (PMID: 2281238)
Epidemiology. 2000 Sep;11(5):550-60. (PMID: 10955408)
Lifetime Data Anal. 2013 Jul;19(3):279-96. (PMID: 23329123)
Neurology. 2020 Sep 8;95(10):e1322-e1332. (PMID: 32753444)
Am J Epidemiol. 2017 Sep 15;186(6):696-708. (PMID: 28938710)
Stat Med. 2019 May 20;38(11):2074-2102. (PMID: 30652356)
Lifetime Data Anal. 2020 Oct;26(4):833-855. (PMID: 32654089)
Am J Epidemiol. 2007 Nov 1;166(9):994-1002; discussion 1003-4. (PMID: 17875581)
Pharmacoepidemiol Drug Saf. 2015 Oct;24(10):1068-75. (PMID: 26265483)
Grant Information:
MR/S017968/1 United Kingdom MRC_ Medical Research Council; MR/T041285/1 United Kingdom MRC_ Medical Research Council; MC_UU_00002/10 United Kingdom MRC_ Medical Research Council
Contributed Indexing:
Keywords: cystic fibrosis; inverse probability weighting; marginal structural model; registries; sequential trials; survival; target trials; time-dependent confounding
Entry Date(s):
Date Created: 20230422 Date Completed: 20230604 Latest Revision: 20240326
Update Code:
20240326
PubMed Central ID:
PMC7614580
DOI:
10.1002/sim.9718
PMID:
37086186
Czasopismo naukowe
Longitudinal observational data on patients can be used to investigate causal effects of time-varying treatments on time-to-event outcomes. Several methods have been developed for estimating such effects by controlling for the time-dependent confounding that typically occurs. The most commonly used is marginal structural models (MSM) estimated using inverse probability of treatment weights (IPTW) (MSM-IPTW). An alternative, the sequential trials approach, is increasingly popular, and involves creating a sequence of "trials" from new time origins and comparing treatment initiators and non-initiators. Individuals are censored when they deviate from their treatment assignment at the start of each "trial" (initiator or noninitiator), which is accounted for using inverse probability of censoring weights. The analysis uses data combined across trials. We show that the sequential trials approach can estimate the parameters of a particular MSM. The causal estimand that we focus on is the marginal risk difference between the sustained treatment strategies of "always treat" vs "never treat." We compare how the sequential trials approach and MSM-IPTW estimate this estimand, and discuss their assumptions and how data are used differently. The performance of the two approaches is compared in a simulation study. The sequential trials approach, which tends to involve less extreme weights than MSM-IPTW, results in greater efficiency for estimating the marginal risk difference at most follow-up times, but this can, in certain scenarios, be reversed at later time points and relies on modelling assumptions. We apply the methods to longitudinal observational data from the UK Cystic Fibrosis Registry to estimate the effect of dornase alfa on survival.
(© 2023 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies