Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Modulation of H-reflex and V-wave responses during dynamic balance perturbations.

Tytuł:
Modulation of H-reflex and V-wave responses during dynamic balance perturbations.
Autorzy:
Nevanperä S; Sports Technology Program, Faculty of Sport and Health Sciences, University of Jyväskylä, Kidekuja 2, 88610, Vuokatti, Finland. .; NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Rautpohjankatu 8, PL35, 40700, Jyväskylä, Finland. .
Hu N; NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Rautpohjankatu 8, PL35, 40700, Jyväskylä, Finland.
Walker S; NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Rautpohjankatu 8, PL35, 40700, Jyväskylä, Finland.
Avela J; NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Rautpohjankatu 8, PL35, 40700, Jyväskylä, Finland.
Piirainen JM; Sports Technology Program, Faculty of Sport and Health Sciences, University of Jyväskylä, Kidekuja 2, 88610, Vuokatti, Finland.; NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Rautpohjankatu 8, PL35, 40700, Jyväskylä, Finland.
Źródło:
Experimental brain research [Exp Brain Res] 2023 Jun; Vol. 241 (6), pp. 1599-1610. Date of Electronic Publication: 2023 May 04.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: Berlin : Springer Verlag
MeSH Terms:
H-Reflex*/physiology
Muscle, Skeletal*/physiology
Male ; Humans ; Female ; Electromyography/methods ; Motor Neurons/physiology ; Lower Extremity ; Muscle Contraction/physiology
References:
J Appl Physiol (1985). 2002 Jun;92(6):2309-18. (PMID: 12015341)
J Physiol. 1997 Sep 15;503 ( Pt 3):691-8. (PMID: 9379421)
Exerc Sport Sci Rev. 2016 Jul;44(3):104-9. (PMID: 27111478)
J Appl Physiol (1985). 2014 Dec 15;117(12):1440-50. (PMID: 25324516)
J Appl Physiol (1985). 2006 Aug;101(2):420-9. (PMID: 16601305)
Front Aging Neurosci. 2020 May 19;12:117. (PMID: 32508626)
Neurophysiol Clin. 2000 Apr;30(2):67-80. (PMID: 10812576)
J Neurol Neurosurg Psychiatry. 1971 Dec;34(6):699-711. (PMID: 5158786)
Clin Neurophysiol. 2010 Oct;121(10):1680-9. (PMID: 20434396)
Clin Biomech (Bristol, Avon). 2002 Nov-Dec;17(9-10):666-77. (PMID: 12446163)
Acta Physiol (Oxf). 2008 Jun;193(2):101-16. (PMID: 18346210)
Exp Brain Res. 1989;78(1):28-32. (PMID: 2591515)
J Neurosci. 2017 Oct 4;37(40):9778-9784. (PMID: 28871033)
J Neural Transm (Vienna). 2007;114(10):1339-48. (PMID: 17393068)
J Physiol. 1999 May 1;516 ( Pt 3):931-8. (PMID: 10200438)
J Physiol. 2001 Aug 1;534(Pt 3):925-33. (PMID: 11483721)
J Physiol. 1998 Oct 1;512 ( Pt 1):267-76. (PMID: 9729635)
Brain Res. 1995 Nov 27;700(1-2):303-7. (PMID: 8624727)
Clin Neurophysiol. 2005 Jun;116(6):1400-4. (PMID: 15978502)
Physiol Rep. 2013 Oct;1(5):e00099. (PMID: 24303171)
Exp Brain Res. 2008 Jun;187(4):497-507. (PMID: 18458890)
Exp Brain Res. 2009 Feb;193(2):275-86. (PMID: 18985330)
Eur J Appl Physiol. 2002 Apr;86(6):455-68. (PMID: 11944092)
Front Hum Neurosci. 2013 Apr 24;7:152. (PMID: 23630483)
J Neurophysiol. 2000 Jul;84(1):184-8. (PMID: 10899195)
J Appl Physiol (1985). 2022 Sep 1;133(3):689-696. (PMID: 35834623)
Eur J Appl Physiol Occup Physiol. 1993;66(2):116-21. (PMID: 8472692)
Exp Brain Res. 1990;83(1):22-8. (PMID: 2073943)
Exp Brain Res. 2019 Mar;237(3):777-791. (PMID: 30604019)
J Neurophysiol. 2013 Oct;110(7):1476-83. (PMID: 23825395)
Neuroscience. 2017 Dec 4;365:12-22. (PMID: 28951323)
PLoS One. 2013 Oct 11;8(10):e77705. (PMID: 24147061)
Front Integr Neurosci. 2015 Jan 28;9:2. (PMID: 25674055)
J Electromyogr Kinesiol. 2013 Apr;23(2):296-301. (PMID: 23158208)
J Neurophysiol. 2005 Nov;94(5):3555-62. (PMID: 16049144)
J Neurophysiol. 2013 Dec;110(11):2557-62. (PMID: 24047908)
J Physiol. 1990 Sep;428:561-77. (PMID: 2231424)
Neurosci Lett. 2003 Jan 30;337(1):25-8. (PMID: 12524163)
Prog Neurobiol. 1987;28(4):345-76. (PMID: 3588965)
Electroencephalogr Clin Neurophysiol. 1997 Apr;105(2):135-40. (PMID: 9152208)
Med Sci (Basel). 2020 Nov 25;8(4):. (PMID: 33255729)
J Appl Physiol (1985). 2007 Jul;103(1):402-11. (PMID: 17446407)
Front Physiol. 2022 Oct 14;13:957650. (PMID: 36311220)
Exp Brain Res. 2008 Jul;188(3):353-61. (PMID: 18421451)
Exp Brain Res. 2012 Jun;219(2):163-74. (PMID: 22466409)
J Clin Neurophysiol. 2019 Mar;36(2):97-103. (PMID: 30624286)
Electroencephalogr Clin Neurophysiol. 1995 Dec;97(6):387-93. (PMID: 8536590)
Electromyogr Clin Neurophysiol. 2000 Mar;40(2):89-94. (PMID: 10746184)
J Clin Neurophysiol. 2011 Apr;28(2):217-21. (PMID: 21399516)
Neurosci Lett. 2004 Sep 9;367(3):369-74. (PMID: 15337268)
Arch Phys Med Rehabil. 2009 Dec;90(12):2131-4. (PMID: 19969180)
Physiol Rep. 2014 Dec 11;2(12):. (PMID: 25501438)
J Appl Physiol (1985). 2012 Jan;112(1):54-63. (PMID: 21998264)
J Neurophysiol. 2008 Mar;99(3):1243-52. (PMID: 18199811)
Electromyogr Clin Neurophysiol. 2001 Jan-Feb;41(1):9-15. (PMID: 11234570)
Contributed Indexing:
Keywords: Dynamic balance; Dynamic condition; H-reflex; Neural modulation; V-wave
Entry Date(s):
Date Created: 20230504 Date Completed: 20230529 Latest Revision: 20230530
Update Code:
20240105
PubMed Central ID:
PMC10224810
DOI:
10.1007/s00221-023-06625-6
PMID:
37142781
Czasopismo naukowe
Motoneuron excitability is possible to measure using H-reflex and V-wave responses. However, it is not known how the motor control is organized, how the H-reflex and V-wave responses modulate and how repeatable these are during dynamic balance perturbations. To assess the repeatability, 16 participants (8 men, 8 women) went through two, identical measurement sessions with ~ 48 h intervals, where maximal isometric plantar flexion (IMVC) and dynamic balance perturbations in horizontal, anterior-posterior direction were performed. Soleus muscle (SOL) neural modulation during balance perturbations were measured at 40, 70, 100 and 130 ms after ankle movement by using both H-reflex and V-wave methods. V-wave, which depicts the magnitude of efferent motoneuronal output (Bergmann et al. in JAMA 8:e77705, 2013), was significantly enhanced as early as 70 ms after the ankle movement. Both the ratio of M-wave-normalized V-wave (0.022-0.076, p < 0.001) and H-reflex (0.386-0.523, p < 0.001) increased significantly at the latency of 70 ms compared to the latency of 40 ms and remained at these levels at latter latencies. In addition, M-wave normalized V-wave/H-reflex ratio increased from 0.056 to 0.179 (p < 0.001). The repeatability of V-wave demonstrated moderate-to-substantial repeatability (ICC = 0.774-0.912) whereas the H-reflex was more variable showing fair-to-substantial repeatability (ICC = 0.581-0.855). As a conclusion, V-wave was enhanced already at 70 ms after the perturbation, which may indicate that increased activation of motoneurons occurred due to changes in descending drive. Since this is a short time-period for voluntary activity, some other, potentially subcortical responses might be involved for V-wave increment rather than voluntary drive. Our results addressed the usability and repeatability of V-wave method during dynamic conditions, which can be utilized in future studies.
(© 2023. The Author(s).)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies