Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Spatiotemporal variability of extreme temperature indices and their implications over the heterogeneous river basin, India.

Tytuł:
Spatiotemporal variability of extreme temperature indices and their implications over the heterogeneous river basin, India.
Autorzy:
Jibhakate SM; Department of Civil Engineering, Sardar Vallabhbhai National Institute of Technology Surat, Surat, Gujarat, 395007, India.
Gehlot LK; Department of Civil Engineering, Sardar Vallabhbhai National Institute of Technology Surat, Surat, Gujarat, 395007, India.
Timbadiya PV; Department of Civil Engineering, Sardar Vallabhbhai National Institute of Technology Surat, Surat, Gujarat, 395007, India. .
Patel PL; Department of Civil Engineering, Sardar Vallabhbhai National Institute of Technology Surat, Surat, Gujarat, 395007, India.
Źródło:
Environmental monitoring and assessment [Environ Monit Assess] 2023 May 12; Vol. 195 (6), pp. 664. Date of Electronic Publication: 2023 May 12.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: 1998- : Dordrecht : Springer
Original Publication: Dordrecht, Holland ; Boston : D. Reidel Pub. Co., c1981-
MeSH Terms:
Rivers*
Environmental Monitoring*
Humans ; Temperature ; Hot Temperature ; India ; Climate Change
References:
Adarsh, S., & Janga Reddy, M. (2015). Trend analysis of rainfall in four meteorological subdivisions of southern India using nonparametric methods and discrete wavelet transforms. International Journal of Climatology, 35(6), 1107–1124. https://doi.org/10.1002/joc.4042. (PMID: 10.1002/joc.4042)
Ahmed, I. A., Dutta, D. K., Baig, M. R. I., Roy, S. S., & Rahman, A. (2021). Implications of changes in temperature and precipitation on the discharge of Brahmaputra River in the urban watershed of Guwahati, India. Environmental Monitoring and Assessment, 193(8), 1–21. https://doi.org/10.1007/s10661-021-09284-8. (PMID: 10.1007/s10661-021-09284-8)
Alexander, L. V. (2016). Global observed long-term changes in temperature and precipitation extremes: A review of progress and limitations in IPCC assessments and beyond. Weather and Climate Extremes, 11, 4–16. https://doi.org/10.1016/j.wace.2015.10.007. (PMID: 10.1016/j.wace.2015.10.007)
Alexander, L. V., Zhang, X., Peterson, T. C., Caesar, J., Gleason, B., Klein Tank, A. M. G., Haylock, M., Collins, D., Trewin, B., Rahimzadeh, F., Tagipour, A., Rupa Kumar, K., Revadekar, J., Griffiths, G., Vincent, L., Stephenson, D. B., Burn, J., Aguilar, E., Brunet M., Taylor, M., New, M., Zhai, P., Rusticucci, M., & Vazquez-Aguirre, J. L. (2006). Global observed changes in daily climate extremes of temperature and precipitation. Journal of Geophysical Research: Atmospheres, 111(D5). https://doi.org/10.1029/2005JD006290.
Alexandersson, H. (1986). A homogeneity test applied to precipitation data. Journal of Climatology, 6(6), 661–675. https://doi.org/10.1002/joc.3370060607. (PMID: 10.1002/joc.3370060607)
Ali, R., Kuriqi, A., Abubaker, S., & Kisi, O. (2019). Long-term trends and seasonality detection of the observed flow in Yangtze River using Mann-Kendall and Sen’s innovative trend method. Water, 11(9), 1855. https://doi.org/10.3390/w11091855. (PMID: 10.3390/w11091855)
Amnuaylojaroen, T., Limsakul, A., Kirtsaeng, S., Parasin, N., & Surapipith, V. (2022). Effect of the near-future climate change under RCP8. 5 on the heat stress and associated work performance in Thailand. Atmosphere, 13(2), 325.  https://doi.org/10.3390/atmos13020325.
Awasthi, A., Vishwakarma, K., & Pattnayak, K. C. (2022). Retrospection of heatwave and heat index. Theoretical and Applied Climatology, 147(1), 589–604. https://doi.org/10.1007/s00704-021-03854-z. (PMID: 10.1007/s00704-021-03854-z)
Bethere, L., Sennikovs, J., & Bethers, U. (2017). Climate indices for the Baltic states from principal component analysis. Earth System Dynamics, 8(4), 951–962. https://doi.org/10.5194/esd-8-951-2017. (PMID: 10.5194/esd-8-951-2017)
Buishand, T. A. (1982). Some methods for testing the homogeneity of rainfall records. Journal of Hydrology, 58(1–2), 11–27. https://doi.org/10.1016/0022-1694(82)90066-X. (PMID: 10.1016/0022-1694(82)90066-X)
Caliński, T., & Harabasz, J. (1974). A dendrite method for cluster analysis. Communications in Statistics-Theory and Methods, 3(1), 1–27. https://doi.org/10.1080/03610927408827101. (PMID: 10.1080/03610927408827101)
Census. (2011). Population enumeration data (final population), Office of the Registrar general and Census Commissioner, India, Ministry of Home Affairs, Government of India. Retrieved May 20, 2022, from  https://censusindia.gov.in/census.website/.
Chalchissa, F. B., & Feyisa, G. L. (2022). Frequency and geospatial vulnerability indices of rainfall and temperature extremes in the Jimma Zone. Ethiopia. Environmental Monitoring and Assessment, 194(3), 1–15. https://doi.org/10.1007/s10661-022-09775-2. (PMID: 10.1007/s10661-022-09775-2)
Chandole, V., Joshi, G. S., & Rana, S. C. (2019). Spatio-temporal trend detection of hydro-meteorological parameters for climate change assessment in Lower Tapi river basin of Gujarat state, India. Journal of Atmospheric and Solar-Terrestrial Physics, 195, 105130.  https://doi.org/10.1016/j.jastp.2019.105130.
Chen, W., Chen, C., Li, L., Xing, L., Huang, G., & Wu, C. (2015). Spatiotemporal analysis of extreme hourly precipitation patterns in Hainan Island, South China. Water, 7(5), 2239–2253. https://doi.org/10.3390/w7052239. (PMID: 10.3390/w7052239)
Cheng, J., Xu, Z., Zhu, R., Wang, X., Jin, L., Song, J., & Su, H. (2014). Impact of diurnal temperature range on human health: a systematic review. International Journal of Biometeorology, 58(9), 2011–2024. https://doi.org/10.1007/s00484-014-0797-5. (PMID: 10.1007/s00484-014-0797-5)
Childs, C. (2004). Interpolating surfaces in ArcGIS spatial analyst. ArcUser, July-September, 3235(569), 32–35.
CWC. (2014). Tapi basin watershed atlas. New Delhi: Central Water Commission.
Dash, S. K., & Kjellstrom, T. (2011). Workplace heat stress in the context of rising temperature in India. Current Science, 101(4), 496–503. https://www.currentscience.ac.in/Volumes/101/04/0496.pdf.
Davies, D. L., & Bouldin, D. W. (1979). A cluster separation measure. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2, 224–227. https://doi.org/10.1109/TPAMI.1979.4766909. (PMID: 10.1109/TPAMI.1979.4766909)
Demšar, U., Harris, P., Brunsdon, C., Fotheringham, A. S., & McLoone, S. (2013). Principal component analysis on spatial data: an overview. Annals of the Association of American Geographers, 103(1), 106–128. https://doi.org/10.1080/00045608.2012.689236. (PMID: 10.1080/00045608.2012.689236)
Deshpande, N. R., Kothawale, D. R., & Kulkarni, A. (2016). Changes in climate extremes over major river basins of India. International Journal of Climatology, 36(14), 4548–4559. https://doi.org/10.1002/joc.4651. (PMID: 10.1002/joc.4651)
Devi, R. M., Patasaraiya, M. K., Sinha, B., Bisaria, J., & Dimri, A. P. (2020). Analyzing precipitation and temperature trends of Kanha and Satpura Tiger Reserve. Central India. Theoretical and Applied Climatology, 140(3), 1435–1450. https://doi.org/10.1007/s00704-020-03134-2. (PMID: 10.1007/s00704-020-03134-2)
Dholakia, H. H., Mishra, V., & Garg, A. (2015). Predicted increases in heat related mortality under climate change in urban India. Retrieved October 10, 2022, from https://www.ceew.in/sites/default/files/CEEW-IITG-IIM-A-Predicted-Increases-in-Heat-related-Mortality-under-Climate-Change-in-Urban-India-30Jun15.pdf.
Dile, Y. T., & Srinivasan, R. (2014). Evaluation of CFSR climate data for hydrologic prediction in data-scarce watersheds: An application in the Blue Nile River Basin. JAWRA Journal of the American Water Resources Association, 50(5), 1226–1241. https://doi.org/10.1111/jawr.12182. (PMID: 10.1111/jawr.12182)
Dimri, A. P. (2019). Comparison of regional and seasonal changes and trends in daily surface temperature extremes over India and its subregions. Theoretical and Applied Climatology, 136(1), 265–286. https://doi.org/10.1007/s00704-018-2486-5. (PMID: 10.1007/s00704-018-2486-5)
Ding, Z., Li, L., Xin, L., Pi, F., Dong, W., Wen, Y., Au, W., & Zhang, Q. (2016). High diurnal temperature range and mortality: Effect modification by individual characteristics and mortality causes in a case-only analysis. Science of the Total Environment, 544, 627–634. https://doi.org/10.1016/j.scitotenv.2015.12.016. (PMID: 10.1016/j.scitotenv.2015.12.016)
Ding, Z., Lu, R., & Wang, Y. (2019). Spatiotemporal variations in extreme precipitation and their potential driving factors in non-monsoon regions of China during 1961–2017. Environmental Research Letters, 14(2), 024005. https://doi.org/10.1088/1748-9326/aaf2ec.
Dubey, A. K., Lal, P., Kumar, P., Kumar, A., & Dvornikov, A. Y. (2021). Present and future projections of heatwave hazard-risk over India: A regional earth system model assessment. Environmental Research, 201, 111573.  https://doi.org/10.1016/j.envires.2021.111573.
Duhan, D., Pandey, A., Gahalaut, K. P. S., & Pandey, R. P. (2013). Spatial and temporal variability in maximum, minimum and mean air temperatures at Madhya Pradesh in central India. Comptes Rendus Geoscience, 345(1), 3–21. https://doi.org/10.1016/j.crte.2012.10.016. (PMID: 10.1016/j.crte.2012.10.016)
Dunn, J. C. (1973). A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. Journal of Cybernetics, 3(3), 32–57. https://doi.org/10.1080/01969727308546046. (PMID: 10.1080/01969727308546046)
El Kenawy, A. M., Lopez-Moreno, J. I., McCabe, M. F., Robaa, S. M., Dominguez-Castro, F., Pena-Gallardo, M., Trigo, R. M., Hereher, M. E., Al-Awadhi, T., & Vicente-Serrano, S. M. (2019). Daily temperature extremes over Egypt: Spatial patterns, temporal trends, and driving forces. Atmospheric Research, 226(219), 239. https://doi.org/10.1016/j.atmosres.2019.04.030. (PMID: 10.1016/j.atmosres.2019.04.030)
Feng, R., Yu, R., Zheng, H., & Gan, M. (2018). Spatial and temporal variations in extreme temperature in Central Asia. International Journal of Climatology, 38, e388–e400. https://doi.org/10.1002/joc.5379. (PMID: 10.1002/joc.5379)
Fischer, E. M., & Knutti, R. (2013). Robust projections of combined humidity and temperature extremes. Nature Climate Change, 3(2), 126–130. https://doi.org/10.1038/nclimate1682. (PMID: 10.1038/nclimate1682)
Fuka, D. R., Walter, M. T., MacAlister, C., Degaetano, A. T., Steenhuis, T. S., & Easton, Z. M. (2014). Using the Climate Forecast System Reanalysis as weather input data for watershed models. Hydrological Processes, 28(22), 5613–5623. https://doi.org/10.1002/hyp.10073. (PMID: 10.1002/hyp.10073)
Geetha, R., Ramachandran, A., Indumathi, J., Palanivelu, K., Uma, G. V., Bal, P. K., & Thirumurugan, P. (2019). Characterization of future climate extremes over Tamil Nadu, India, using high-resolution regional climate model simulation. Theoretical and Applied Climatology, 138(3), 1297–1309. https://doi.org/10.1007/s00704-019-02901-0. (PMID: 10.1007/s00704-019-02901-0)
Gehlot, L. K., Jibhakate, S. M., Sharma, P. J., Patel, P. L., & Timbadiya, P. V. (2021). Spatio-temporal variability of rainfall indices and their teleconnections with El Niño-Southern oscillation for Tapi Basin, India. Asia-Pacific Journal of Atmospheric Sciences, 57(1), 99–118. https://doi.org/10.1007/s13143-020-00179-1. (PMID: 10.1007/s13143-020-00179-1)
Ghosh, S., Vittal, H., Sharma, T., Karmakar, S., Kasiviswanathan, K. S., Dhanesh, Y., & Gunthe, S. S. (2016). Indian summer monsoon rainfall: implications of contrasting trends in the spatial variability of means and extremes. PloS One, 11(7), e0158670.  https://doi.org/10.1371/journal.pone.0158670.
Goswami, B. N., Venugopal, V., Sengupta, D., Madhusoodanan, M. S., & Xavier, P. K. (2006). Increasing trend of extreme rain events over India in a warming environment. Science, 314(5804), 1442–1445. https://doi.org/10.1126/science.1132027. (PMID: 10.1126/science.1132027)
Goswami, U. P., Bhargav, K., Hazra, B., & Goyal, M. K. (2018). Spatiotemporal and joint probability behavior of temperature extremes over the Himalayan region under changing climate. Theoretical and Applied Climatology, 134(1), 477–498. https://doi.org/10.1007/s00704-017-2288-1. (PMID: 10.1007/s00704-017-2288-1)
Guan, Y., Mohammadi, B., Pham, Q. B., Adarsh, S., Balkhair, K. S., Rahman, K. U., Linh, N. T. T., & Tri, D. Q. (2020). A novel approach for predicting daily pan evaporation in the coastal regions of Iran using support vector regression coupled with krill herd algorithm model. Theoretical and Applied Climatology, 142(1), 349–367. https://doi.org/10.1007/s00704-020-03283-4. (PMID: 10.1007/s00704-020-03283-4)
Guarnier, L., & Barroso, G. F. (2021). Spatial–temporal variability and extreme climate indices of precipitation in a coastal watershed of southeastern Brazil. Environmental Monitoring and Assessment, 193(11), 1–18. https://doi.org/10.1007/s10661-021-09491-3. (PMID: 10.1007/s10661-021-09491-3)
Halimatou, A. T., Kalifa, T., & Kyei-Baffour, N. (2017). Assessment of changing trends of daily precipitation and temperature extremes in Bamako and Ségou in Mali from 1961–2014. Weather and Climate Extremes, 18, 8–16. https://doi.org/10.1016/j.wace.2017.09.002. (PMID: 10.1016/j.wace.2017.09.002)
Hamed, K. H., & Rao, A. R. (1998). A modified Mann-Kendall trend test for autocorrelated data. Journal of Hydrology, 204(1–4), 182–196. https://doi.org/10.1016/S0022-1694(97)00125-X. (PMID: 10.1016/S0022-1694(97)00125-X)
Harrington, L. J., & Otto, F. E. (2018). Changing population dynamics and uneven temperature emergence combine to exacerbate regional exposure to heat extremes under 1.5 C and 2 C of warming. Environmental Research Letters, 13(3), 034011.  https://doi.org/10.1088/1748-9326/aaaa99.
Hirsch, R. M., Slack, J. R., & Smith, R. A. (1982). Techniques of trend analysis for monthly water quality data. Water Resources Research, 18(1), 107–121. https://doi.org/10.1029/WR018i001p00107. (PMID: 10.1029/WR018i001p00107)
Hrudya, P. H., Varikoden, H., & Vishnu, R. (2021). A review on the Indian summer monsoon rainfall, variability and its association with ENSO and IOD. Meteorology and Atmospheric Physics, 133(1), 1–14. https://doi.org/10.1007/s00703-020-00734-5. (PMID: 10.1007/s00703-020-00734-5)
Huntington, T. G. (2010). Climate warming-induced intensification of the hydrologic cycle: An assessment of the published record and potential impacts on agriculture. Advances in Agronomy, 109, 1–53. https://doi.org/10.1016/B978-0-12-385040-9.00001-3. (PMID: 10.1016/B978-0-12-385040-9.00001-3)
Huth, R., & Pokorná, L. (2005). Simultaneous analysis of climatic trends in multiple variables: An example of application of multivariate statistical methods. International Journal of Climatology: A Journal of the Royal Meteorological Society, 25(4), 469–484. https://doi.org/10.1002/joc.1146. (PMID: 10.1002/joc.1146)
IPCC. (2014). Climate Change 2014: Synthesis report contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change [Core Writing Team, Pachauri RK, Meyer LA (eds.)]. IPCC, Geneva, Switzerland, p. 151. Retrieved February 10, 2022, from https://www.ipcc.ch/report/ar5/syr/.
Jain, S. K., & Kumar, V. (2012). Trend analysis of rainfall and temperature data for India. Current Science, 102(1), 37–49. https://www.currentscience.ac.in/Volumes/102/01/0037.pdf.
Jolliffe, I. T. (1972). Discarding variables in a principal component analysis. I: Artificial data. Journal of the Royal Statistical Society: Series C (Applied Statistics), 21(2), 160–173. https://doi.org/10.2307/2346488.
Jolliffe, I. (2002). Principal component analysis. New York: Springer.
Joshi, S., Kumar, K., Joshi, V., & Pande, B. (2014). Rainfall variability and indices of extreme rainfall-analysis and perception study for two stations over Central Himalaya, India. Natural Hazards, 72(2), 361–374. https://doi.org/10.1007/s11069-013-1012-4. (PMID: 10.1007/s11069-013-1012-4)
Kale, G. D. (2020). Trend analyses of regional time series of temperatures and rainfall of the Tapi basin. Journal of Agrometeorology, 22(1), 48–51. (PMID: 10.54386/jam.v22i1.121)
Kale, G. D. (2021). Trend analyses of seasonal mean temperature series pertaining to the tapi river basin using monthly data. In Jha, R., Singh, V. P., Singh, V., Roy, L. B., & Thendiyath, R. (eds.) Climate Change Impacts on Water Resources. Water Science and Technology Library, 98, 1–7. Springer, Cham. https://doi.org/10.1007/978-3-030-64202-0_1.
Keggenhoff, I., Elizbarashvili, M., & King, L. (2015). Recent changes in Georgia’s temperature means and extremes: Annual and seasonal trends between 1961 and 2010. Weather and Climate Extremes, 8, 34–45. https://doi.org/10.1016/j.wace.2014.11.002. (PMID: 10.1016/j.wace.2014.11.002)
Kendall, M. G. (1975). Rank Correlation Methods. London: Charles Griffin.
Knapp, A. K., Hoover, D. L., Wilcox, K. R., Avolio, M. L., Koerner, S. E., La Pierre, K. J., Loik, M. E., Luo, Y., Sala, O. E., & Smith, M. D. (2015). Characterizing differences in precipitation regimes of extreme wet and dry years: implications for climate change experiments. Global Change Biology, 21(7), 2624–2633. https://doi.org/10.1111/gcb.12888. (PMID: 10.1111/gcb.12888)
Koteswara Rao, K., Lakshmi Kumar, T. V., Kulkarni, A., Ho, C. H., Mahendranath, B., Desamsetti, S., Patwardhan, S., Dandi, A. R., Barbosa, H., & Sabade, S. (2020). Projections of heat stress and associated work performance over India in response to global warming. Scientific Reports, 10(1), 1–14. https://doi.org/10.1038/s41598-020-73245-3. (PMID: 10.1038/s41598-020-73245-3)
Kumar, N., Jaswal, A. K., Mohapatra, M., & Kore, P. A. (2017). Spatial and temporal variation in daily temperature indices in summer and winter seasons over India (1969–2012). Theoretical and Applied Climatology, 129(3), 1227–1239. https://doi.org/10.1007/s00704-016-1844-4. (PMID: 10.1007/s00704-016-1844-4)
Kumar, N., Poonia, V., Gupta, B. B., & Goyal, M. K. (2021). A novel framework for risk assessment and resilience of critical infrastructure towards climate change. Technological Forecasting and Social Change, 165, 120532.  https://doi.org/10.1016/j.techfore.2020.120532.
Kumar, S., Chanda, K., & Pasupuleti, S. (2020). Spatiotemporal analysis of extreme indices derived from daily precipitation and temperature for climate change detection over India. Theoretical and Applied Climatology, 140(1), 343–357. https://doi.org/10.1007/s00704-020-03088-5. (PMID: 10.1007/s00704-020-03088-5)
Kundu, S., Khare, D., & Mondal, A. (2017). Interrelationship of rainfall, temperature and reference evapotranspiration trends and their net response to the climate change in Central India. Theoretical and Applied Climatology, 130(3), 879–900. https://doi.org/10.1007/s00704-016-1924-5. (PMID: 10.1007/s00704-016-1924-5)
Lange, H., & Sippel, S. (2020). Machine learning applications in hydrology. In: Levia, D.F., Carlyle-Moses, D. E., Iida, S., Michalzik, B., Nanko, K., Tischer, A. (eds) Forest-Water Interactions. Ecological Studies, vol 240. Springer, Cham. https://doi.org/10.1007/978-3-030-26086-6_10.
Liu, Z., Anderson, B., Yan, K., Dong, W., Liao, H., & Shi, P. (2017). Global and regional changes in exposure to extreme heat and the relative contributions of climate and population change. Scientific Reports, 7(1), 1–9. https://doi.org/10.1038/srep43909. (PMID: 10.1038/srep43909)
Lobell, D. B., Sibley, A., & Ivan Ortiz-Monasterio, J. (2012). Extreme heat effects on wheat senescence in India. Nature Climate Change, 2(3), 186–189. https://doi.org/10.1038/nclimate1356. (PMID: 10.1038/nclimate1356)
Loliyana, V. D., & Patel, P. L. (2018). Performance evaluation and parameters sensitivity of a distributed hydrological model for a semi-arid catchment in India. Journal of Earth System Science, 127(8), 1–26. https://doi.org/10.1007/s12040-018-1021-5. (PMID: 10.1007/s12040-018-1021-5)
Mall, R. K., Chaturvedi, M., Singh, N., Bhatla, R., Singh, R. S., Gupta, A., & Niyogi, D. (2021). Evidence of asymmetric change in diurnal temperature range in recent decades over different agro-climatic zones of India. International Journal of Climatology, 41(4), 2597–2610. https://doi.org/10.1002/joc.6978. (PMID: 10.1002/joc.6978)
Mann, H. B. (1945). Nonparametric tests against trend. Econometrica: Journal of the Econometric Society, 245–259. https://doi.org/10.2307/1907187.
Mazdiyasni, O., AghaKouchak, A., Davis, S. J., Madadgar, S., Mehran, A., Ragno, E., Sadegh, M., Sengupta, A., Ghosh, S., Dhanya, C. T., & Niknejad, M. (2017). Increasing probability of mortality during Indian heat waves. Science Advances, 3(6), e1700066.  https://doi.org/10.1126/sciadv.1700066.
Min, S. K., Zhang, X., Zwiers, F. W., & Hegerl, G. C. (2011). Human contribution to more-intense precipitation extremes. Nature, 470(7334), 378–381. https://doi.org/10.1038/nature09763. (PMID: 10.1038/nature09763)
Mohammad, P., & Goswami, A. (2019). Temperature and precipitation trend over 139 major Indian cities: An assessment over a century. Modeling Earth Systems and Environment, 5(4), 1481–1493. https://doi.org/10.1007/s40808-019-00642-7. (PMID: 10.1007/s40808-019-00642-7)
Mohammadi, B. (2021). A review on the applications of machine learning for runoff modeling. Sustainable Water Resources Management, 7(6), 1–11. https://doi.org/10.1007/s40899-021-00584-y. (PMID: 10.1007/s40899-021-00584-y)
Mohammadi, B., & Moazenzadeh, R. (2021). Performance analysis of daily global solar radiation models in Peru by regression analysis. Atmosphere, 12(3), 389. https://doi.org/10.3390/atmos12030389. (PMID: 10.3390/atmos12030389)
Mohammadi, B., Safari, M. J. S., & Vazifehkhah, S. (2022). IHACRES, GR4J and MISD-based multi conceptual-machine learning approach for rainfall-runoff modeling. Scientific Reports, 12(1), 1–21. https://doi.org/10.1038/s41598-022-16215-1. (PMID: 10.1038/s41598-022-16215-1)
Mohan, M., & Kandya, A. (2015). Impact of urbanization and land-use/land-cover change on diurnal temperature range: A case study of tropical urban airshed of India using remote sensing data. Science of the Total Environment, 506, 453–465. https://doi.org/10.1016/j.scitotenv.2014.11.006. (PMID: 10.1016/j.scitotenv.2014.11.006)
Mondal, A., Khare, D., & Kundu, S. (2015). Spatial and temporal analysis of rainfall and temperature trend of India. Theoretical and Applied Climatology, 122(1), 143–158. https://doi.org/10.1007/s00704-014-1283-z. (PMID: 10.1007/s00704-014-1283-z)
Mukherjee, S., Aadhar, S., Stone, D., & Mishra, V. (2018). Increase in extreme precipitation events under anthropogenic warming in India. Weather and Climate Extremes, 20, 45–53. https://doi.org/10.1016/j.wace.2018.03.005. (PMID: 10.1016/j.wace.2018.03.005)
Nandam, V., & Patel, P. L. (2022). A novel hybrid approach using SVM and spectral indices for enhanced land use land cover mapping of coastal urban plains. Geocarto International, 37(16), 4714–4736. https://doi.org/10.1080/10106049.2021.1899300. (PMID: 10.1080/10106049.2021.1899300)
Nengzouzam, G., Hodam, S., Bandyopadhyay, A., & Bhadra, A. (2019). Spatial and temporal trends in high resolution gridded temperature data over India. Asia-Pacific Journal of Atmospheric Sciences, 55(4), 761–772. https://doi.org/10.1007/s13143-019-00120-1. (PMID: 10.1007/s13143-019-00120-1)
Patakamuri, S. K., Muthiah, K., & Sridhar, V. (2020). Long-term homogeneity, trend, and change-point analysis of rainfall in the arid district of Ananthapuramu, Andhra Pradesh State, India. Water, 12(1), 211. https://doi.org/10.3390/w12010211. (PMID: 10.3390/w12010211)
Patra, S., Sahoo, S., Mishra, P., & Mahapatra, S. C. (2018). Impacts of urbanization on land use/cover changes and its probable implications on local climate and groundwater level. Journal of Urban Management, 7(2), 70–84. https://doi.org/10.1016/j.jum.2018.04.006. (PMID: 10.1016/j.jum.2018.04.006)
Perkins, S. E. (2015). A review on the scientific understanding of heatwaves—Their measurement, driving mechanisms, and changes at the global scale. Atmospheric Research, 164, 242–267. https://doi.org/10.1016/j.atmosres.2015.05.014. (PMID: 10.1016/j.atmosres.2015.05.014)
Pettitt, A. N. (1979). A non-parametric approach to the change-point problem. Journal of the Royal Statistical Society: Series C (Applied Statistics), 28(2), 126–135. https://doi.org/10.2307/2346729. (PMID: 10.2307/2346729)
Pingale, S. M., Khare, D., Jat, M. K., & Adamowski, J. (2014). Spatial and temporal trends of mean and extreme rainfall and temperature for the 33 urban centers of the arid and semi-arid state of Rajasthan, India. Atmospheric Research, 138, 73–90. https://doi.org/10.1016/j.atmosres.2013.10.024. (PMID: 10.1016/j.atmosres.2013.10.024)
Poudel, A., Cuo, L., Ding, J., & Gyawali, A. R. (2020). Spatio-temporal variability of the annual and monthly extreme temperature indices in Nepal. International Journal of Climatology, 40(11), 4956–4977. https://doi.org/10.1002/joc.6499. (PMID: 10.1002/joc.6499)
Pratap, S., & Markonis, Y. (2022). The response of the hydrological cycle to temperature changes in recent and distant climatic history. Progress in Earth and Planetary Science, 9(1), 1–37. https://doi.org/10.1186/s40645-022-00489-0. (PMID: 10.1186/s40645-022-00489-0)
Rehana, S., Yeleswarapu, P., Basha, G., & Munoz-Arriola, F. (2022). Precipitation and temperature extremes and association with large-scale climate indices: an observational evidence over India. Journal of Earth System Science, 131(3), 1–20. https://doi.org/10.1007/s12040-022-01911-3. (PMID: 10.1007/s12040-022-01911-3)
Richman, M. B. (1986). Rotation of principal components. Journal of Climatology, 6(3), 293–335. https://doi.org/10.1002/joc.3370060305. (PMID: 10.1002/joc.3370060305)
Riha, S. J., Wilks, D. S., & Simoens, P. (1996). Impact of temperature and precipitation variability on crop model predictions. Climatic Change, 32(3), 293–311. https://doi.org/10.1007/BF00142466. (PMID: 10.1007/BF00142466)
Rothfusz, L. P. (1990). The heat index “Equation” (or, more than you ever wanted to know about heat index). Fort Worth, Texas: National Oceanic and Atmospheric Administration, National Weather Service, Office of Meteorology, 9023.
Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20, 53–65. https://doi.org/10.1016/0377-0427(87)90125-7. (PMID: 10.1016/0377-0427(87)90125-7)
Roy, S. S. (2019). Spatial patterns of trends in seasonal extreme temperatures in India during 1980–2010. Weather and Climate Extremes, 24, 100203. https://doi.org/10.1016/j.wace.2019.100203.
Rubel, F., & Kottek, M. (2010). Observed and projected climate shifts 1901-2100 depicted by world maps of the Köppen-Geiger climate classification. Meteorologische Zeitschrift, 19(2),135.  https://doi.org/10.1127/0941-2948/2010/0430.
Saleem, F., Zeng, X., Hina, S., & Omer, A. (2021). Regional changes in extreme temperature records over Pakistan and their relation to Pacific variability. Atmospheric Research, 250, 105407. https://doi.org/10.1016/j.atmosres.2020.105407.
Salehi, S., Dehghani, M., Mortazavi, S. M., & Singh, V. P. (2020). Trend analysis and change point detection of seasonal and annual precipitation in Iran. International Journal of Climatology, 40(1), 308–323. https://doi.org/10.1002/joc.6211. (PMID: 10.1002/joc.6211)
Sharma, A., & Goyal, M. K. (2018). Assessment of ecosystem resilience to hydroclimatic disturbances in India. Global Change Biology, 24(2), e432–e441. https://doi.org/10.1111/gcb.13874. (PMID: 10.1111/gcb.13874)
Sharma, P. J., Loliyana, V. D., Resmi, S. R., Timbadiya, P. V., & Patel, P. L. (2018). Spatiotemporal trends in extreme rainfall and temperature indices over Upper Tapi Basin, India. Theoretical and Applied Climatology, 134(3), 1329–1354. https://doi.org/10.1007/s00704-017-2343-y. (PMID: 10.1007/s00704-017-2343-y)
Sharma, P. J., Patel, P. L., & Jothiprakash, V. (2019). Impact of rainfall variability and anthropogenic activities on streamflow changes and water stress conditions across Tapi Basin in India. Science of the Total Environment, 687, 885–897. https://doi.org/10.1016/j.scitotenv.2019.06.097. (PMID: 10.1016/j.scitotenv.2019.06.097)
Sharma, P. J., Patel, P. L., & Jothiprakash, V. (2020). Hydroclimatic teleconnections of large-scale oceanic-atmospheric circulations on hydrometeorological extremes of Tapi Basin, India. Atmospheric Research, 235, 104791.  https://doi.org/10.1016/j.atmosres.2019.104791.
Sharma, P. J., Patel, P. L., & Jothiprakash, V. (2021). Data-driven modelling framework for streamflow prediction in a physio-climatically heterogeneous river basin. Soft Computing, 25(8), 5951–5978. https://doi.org/10.1007/s00500-021-05585-9. (PMID: 10.1007/s00500-021-05585-9)
Sharma, S., & Mujumdar, P. (2017). Increasing frequency and spatial extent of concurrent meteorological droughts and heatwaves in India. Scientific Reports, 7(1), 1–9. https://doi.org/10.1038/s41598-017-15896-3. (PMID: 10.1038/s41598-017-15896-3)
Singh, V., Sharma, A., & Goyal, M. K. (2019). Projection of hydro-climatological changes over eastern Himalayan catchment by the evaluation of RegCM4 RCM and CMIP5 GCM models. Hydrology Research, 50(1), 117–137. https://doi.org/10.2166/nh.2017.193. (PMID: 10.2166/nh.2017.193)
Sinha, J., Sharma, A., Khan, M., & Goyal, M. K. (2018). Assessment of the impacts of climatic variability and anthropogenic stress on hydrologic resilience to warming shifts in Peninsular India. Scientific Reports, 8(1), 1–14. https://doi.org/10.1038/s41598-018-32091-0. (PMID: 10.1038/s41598-018-32091-0)
Srivastava, A. K., Rajeevan, M., & Kshirsagar, S. R. (2009). Development of a high resolution daily gridded temperature data set (1969–2005) for the Indian region. Atmospheric Science Letters, 10(4), 249–254. https://doi.org/10.1002/asl.232. (PMID: 10.1002/asl.232)
Steadman, R. G. (1979). The assessment of sultriness. Part I: A temperature-humidity index based on human physiology and clothing science. Journal of Applied Meteorology and Climatology, 18(7), 861–873.  https://doi.org/10.1175/1520-0450(1979)018lt;0861:TAOSPI;gt2.0.CO;2.
Subash, N., Singh, S. S., & Priya, N. (2013). Observed variability and trends in extreme temperature indices and rice–wheat productivity over two districts of Bihar, India—A case study. Theoretical and Applied Climatology, 111(1), 235–250. https://doi.org/10.1007/s00704-012-0665-3. (PMID: 10.1007/s00704-012-0665-3)
Tadić, L., Bonacci, O., & Brleković, T. (2019). An example of principal component analysis application on climate change assessment. Theoretical and Applied Climatology, 138(1), 1049–1062. https://doi.org/10.1007/s00704-019-02887-9.
Teixeira, E. I., Fischer, G., Van Velthuizen, H., Walter, C., & Ewert, F. (2013). Global hot-spots of heat stress on agricultural crops due to climate change. Agricultural and Forest Meteorology, 170, 206–215. https://doi.org/10.1016/j.agrformet.2011.09.002. (PMID: 10.1016/j.agrformet.2011.09.002)
Thakur, A., Mishra, P. K., Nema, A. K., & Sahoo, S. P. (2020). Spatio-temporal trends and shift analysis of temperature for Wainganga sub-basin, India. International Journal of Environmental Studies, 77(3), 464–479. https://doi.org/10.1080/00207233.2019.1686884. (PMID: 10.1080/00207233.2019.1686884)
Thomas, T., Gunthe, S. S., Ghosh, N. C., & Sudheer, K. P. (2015). Analysis of monsoon rainfall variability over Narmada basin in central India: Implication of climate change. Journal of Water and Climate Change, 6(3), 615–627. https://doi.org/10.2166/wcc.2014.041. (PMID: 10.2166/wcc.2014.041)
Tian, J., Liu, J., Wang, J., Li, C., Nie, H., & Yu, F. (2017). Trend analysis of temperature and precipitation extremes in major grain producing area of China. International Journal of Climatology, 37(2), 672–687. https://doi.org/10.1002/joc.4732. (PMID: 10.1002/joc.4732)
Trenberth, K. E. (2011). Changes in precipitation with climate change. Climate Research, 47(1–2), 123–138. https://doi.org/10.3354/cr00953. (PMID: 10.3354/cr00953)
Van der Walt, A. J., & Fitchett, J. M. (2021). Exploring extreme warm temperature trends in South Africa: 1960–2016. Theoretical and Applied Climatology, 143(3), 1341–1360. https://doi.org/10.1007/s00704-020-03479-8. (PMID: 10.1007/s00704-020-03479-8)
Van Oldenborgh, G. J., Philip, S., Kew, S., van Weele, M., Uhe, P., Otto, F., Singh, R., Pai, I., Cullen, H., & AchutaRao, K. (2018). Extreme heat in India and anthropogenic climate change. Natural Hazards and Earth System Sciences, 18(1), 365–381. https://doi.org/10.5194/nhess-18-365-2018. (PMID: 10.5194/nhess-18-365-2018)
Vasanthawada, S. R. S., Puppala, H., & Prasad, P. R. C. (2022). Assessing impact of land-use changes on land surface temperature and modelling future scenarios of Surat, India. International Journal of Environmental Science and Technology, 1–14.  https://doi.org/10.1007/s13762-022-04385-4.
Vinnikov, K. Y., Groisman, P. Y., & Lugina, K. M. (1990). Empirical data on contemporary global climate changes (temperature and precipitation). Journal of Climate, 3(6), 662–677. https://doi.org/10.1175/1520-0442(1990)003%3c0662:EDOCGC%3e2.0.CO;2. (PMID: 10.1175/1520-0442(1990)003<0662:EDOCGC>2.0.CO;2)
Von Neumann, J. (1941). Distribution of the ratio of the mean square successive difference to the variance. The Annals of Mathematical Statistics, 12(4), 367–395. https://www.jstor.org/stable/2235951.
Wang, Y., Chen, Y., Chen, J., Wu, R., Guo, P., Zha, S., & Zhang, Q. (2021). Mortality risk attributable to diurnal temperature range: A multicity study in Yunnan of southwest China. Environmental Science and Pollution Research, 28(43), 60597–60608. https://doi.org/10.1007/s11356-021-14981-5. (PMID: 10.1007/s11356-021-14981-5)
Wijngaard, J. B., Klein Tank, A. M. G., & Können, G. P. (2003). Homogeneity of 20th century European daily temperature and precipitation series. International Journal of Climatology: A Journal of the Royal Meteorological Society, 23(6), 679–692. https://doi.org/10.1002/joc.906. (PMID: 10.1002/joc.906)
Wilker, E. H., Yeh, G., Wellenius, G. A., Davis, R. B., Phillips, R. S., & Mittleman, M. A. (2012). Ambient temperature and biomarkers of heart failure: A repeated measures analysis. Environmental Health Perspectives, 120(8), 1083–1087. https://doi.org/10.1289/ehp.1104380. (PMID: 10.1289/ehp.1104380)
Wilks, D. S. (2011). Statistical methods in the atmospheric sciences (Vol. 100). Academic press.
Xu, Z., Etzel, R. A., Su, H., Huang, C., Guo, Y., & Tong, S. (2012). Impact of ambient temperature on children’s health: A systematic review. Environmental Research, 117, 120–131. https://doi.org/10.1016/j.envres.2012.07.002. (PMID: 10.1016/j.envres.2012.07.002)
Ye, J. S., Gong, Y. H., Zhang, F., Ren, J., Bai, X. K., & Zheng, Y. (2018). Which temperature and precipitation extremes best explain the variation of warm versus cold years and wet versus dry years? Journal of Climate, 31(1), 45–59. https://doi.org/10.1175/JCLI-D-17-0377.1. (PMID: 10.1175/JCLI-D-17-0377.1)
Zhang, X., Alexander, L., Hegerl, G. C., Jones, P., Tank, A. K., Peterson, T. C., Trewin, B., & Zwiers, F. W. (2011). Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdisciplinary Reviews: Climate Change, 2(6), 851–870. https://doi.org/10.1002/wcc.147. (PMID: 10.1002/wcc.147)
Zhu, X., & Troy, T. J. (2018). Agriculturally relevant climate extremes and their trends in the world’s major growing regions. Earth’s Future, 6(4), 656–672. https://doi.org/10.1002/2017EF000687. (PMID: 10.1002/2017EF000687)
Grant Information:
16/22/2016-R&D/3059-3076 dated November 7 Ministry of Jal Shakti, Department of Water Resources, River Development & Ganga Rejuvenation (DoWR, RD&GR), Government of India; 2016 Ministry of Jal Shakti, Department of Water Resources, River Development & Ganga Rejuvenation (DoWR, RD&GR), Government of India
Contributed Indexing:
Keywords: Cluster analysis; Extreme temperature indices; Heat stress; Principal component analysis (PCA); Tapi River basin; Trend detection
Entry Date(s):
Date Created: 20230512 Date Completed: 20230515 Latest Revision: 20230515
Update Code:
20240105
DOI:
10.1007/s10661-023-11196-8
PMID:
37171502
Czasopismo naukowe
The current study on spatiotemporal variability of temperature presents a holistic approach for quantifying the joint space-time variability of extreme temperature indices over the physio-climatically heterogeneous Tapi River basin (TRB) using two unsupervised machine learning algorithms, i.e., principal component analysis (PCA) and cluster analysis. The long-term variability in extreme temperature indices, recommended by the Expert Team on Climate Change Detection and Indices (ETCCDI), was evaluated for 1951-2016. The magnitude and statistical significance of the temporal trend in extreme temperature indices were estimated using non-parametric Sen's slope estimator and modified Mann Kendall (MMK) tests, respectively. The multivariate assessment of temporal trends using PCA resulted in four principal components (PCs) encapsulating more than 90% variability. The cluster analysis of corresponding PCs resulted in two spatial clusters exhibiting homogeneous spatiotemporal variability. Cluster 1 is characterized by significantly increasing hottest, very hot, and extremely hot days with rising average maximum temperature and intraday temperature variability. On the other hand, cluster 2 showed significantly rising coldest nights, mean minimum, mean temperature, and Tx37 with significantly decreasing intraday and interannual temperature variability, very cold, and extremely cold nights with reducing cold spell durations. The summertime heat stress computation revealed that the Purna sub-catchment of the Tapi basin is more vulnerable to various health issues and decreased work performance (> 10%) for more than 45 days per year. The current study dealing with the associated effects of rising temperature variability on crop yield, human health, and work performance would help policymakers formulate better planning and management strategies to safeguard society and the environment.
(© 2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies