Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Evidences of localized coastal warming near major urban centres along the Indian coastline: past and future trends.

Tytuł:
Evidences of localized coastal warming near major urban centres along the Indian coastline: past and future trends.
Autorzy:
Bhattacharjee S; Dept. of Civil Engineering, Indian Institute of Technology Guwahati, Kamrup, Guwahati Assam, 781039, India. .
Lekshmi K; Dept. of Civil Engineering, Indian Institute of Technology Guwahati, Kamrup, Guwahati Assam, 781039, India.
Bharti R; Dept. of Civil Engineering, Indian Institute of Technology Guwahati, Kamrup, Guwahati Assam, 781039, India.
Źródło:
Environmental monitoring and assessment [Environ Monit Assess] 2023 May 19; Vol. 195 (6), pp. 692. Date of Electronic Publication: 2023 May 19.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: 1998- : Dordrecht : Springer
Original Publication: Dordrecht, Holland ; Boston : D. Reidel Pub. Co., c1981-
MeSH Terms:
Ecosystem*
Environmental Monitoring*
Climate ; Temperature ; Atmosphere
References:
Adamowski, J., & Chan, H. F. (2011). A wavelet neural network conjunction model for groundwater level forecasting. Journal of Hydrology, 407(1–4), 28–40. (PMID: 10.1016/j.jhydrol.2011.06.013)
Adamowski, J., Chan, H. F., Prasher, S. O., Zielinski, B. O., & Sliusarieva, A. (2012). Comparison of multiple linear and nonlinear regression, autoregressive integrated moving average, artificial neural network, and wavelet artificial neural network methods for water demand forecasting in Montreal. Canada. Water Resources Research, 48(1–14), W01528. https://doi.org/10.1029/2010WR009945. (PMID: 10.1029/2010WR009945)
Adhikari, R., & Agrawal, R. K. (2013). An introductory study on time series modeling and forecasting. arXiv preprint arXiv:1302.6613 . https://doi.org/10.48550/arXiv.1302.6613.
Akaike, H. (1974). Markovian representation of stochastic processes and its application to the analysis of autoregressive moving average processes. Annals of the Institute of Statistical Mathematics, 26, 363–387.
Aksoy, H., & Dahamsheh, A. (2009). Artificial neural network models for forecasting monthly precipitation in Jordan. Stoch Environ Res Risk Assess, 23, 917–931. https://doi.org/10.1007/s00477-008-0267-x. (PMID: 10.1007/s00477-008-0267-x)
Alharbi, T., & El-Sorogy, A. (2019). Assessment of seawater pollution of the Al-Khafji coastal area, Arabian Gulf. Saudi Arabia. Environmental Monitoring and Assessment, 191(6), 1–11. https://doi.org/10.1007/s10661-019-7505-1. (PMID: 10.1007/s10661-019-7505-1)
Alizadeh, M. J., & Kavianpour, M. R. (2015). Development of wavelet-ANN models to predict water quality parameters in Hilo Bay. Pacific Ocean. Marine Pollution Bulletin, 98(1–2), 171–178. (PMID: 10.1016/j.marpolbul.2015.06.052)
Al-Rashidi, T. B., El-Gamily, H. I., Amos, C. L., & Rakha, K. A. (2009). Sea surface temperature trends in Kuwait bay. Arabian Gulf. Natural Hazards, 50(1), 73–82. (PMID: 10.1007/s11069-008-9320-9)
Amos, C. L., Martino, S., Sutherland, T. F., & Al Rashidi, T. (2015). Sea surface temperature trends in the coastal zone of British Columbia. Canada. Journal of Coastal Research, 31(2), 434–446. https://doi.org/10.2112/JCOASTRES-D-14-00114.1. (PMID: 10.2112/JCOASTRES-D-14-00114.1)
Amos, C. L., Umgiesser, G., Ghezzo, M., Kassem, H., & Ferrarin, C. (2017). Sea surface temperature trends in Venice Lagoon and the adjacent waters. Journal of Coastal Research, 33(2), 385–395. https://doi.org/10.2112/JCOASTRES-D-16-00017.1. (PMID: 10.2112/JCOASTRES-D-16-00017.1)
Amos, C. L., Al Rashidi, T., Rakha, K., El-Gamily, H., & Nicholls, R. (2013). Sea surface temperature trends in the coastal ocean. Current development in oceanography, 6(1), 1–13. Pushpa publishing house, Allahabad, India. http://www.pphmj.com/journals/cdo.htm.
As-syakur, A., Adnyana, I., Arthana, I. W., & Nuarsa, I. W. (2012). Enhanced built-up and bareness index (EBBI) for mapping built-up and bare land in an urban area. Remote Sensing, 4(10), 2957–2970. (PMID: 10.3390/rs4102957)
Azmi, S., Agarwadkar, Y., Bhattacharya, M., Apte, M., & Inamdar, A. B. (2015). Monitoring and trend mapping of sea surface temperature (SST) from MODIS data: A case study of Mumbai coast. Environmental Monitoring and Assessment, 187(4), 1–13. (PMID: 10.1007/s10661-015-4386-9)
Babu, C. N., & Reddy, B. E. (2014). A moving-average filter based hybrid ARIMA–ANN model for forecasting time series data. Applied Soft Computing, 23, 27–38. https://doi.org/10.1016/j.asoc.2014.05.028. (PMID: 10.1016/j.asoc.2014.05.028)
Balaguru, K., Taraphdar, S., Leung, L. R., & Foltz, G. R. (2014). Increase in the intensity of postmonsoon Bay of Bengal tropical cyclones. Geophysical Research Letters, 41(10), 3594–3601. https://doi.org/10.1002/2014GL060197. (PMID: 10.1002/2014GL060197)
Barão, S. M. M. (2008). Linear and non-linear time series analysis: Forecasting financial markets, PhD Thesis. p. 66.
Barlow, J. F. (2014). Progress in observing and modelling the urban boundary layer. Urban Climate, 10, 216–240. https://doi.org/10.1016/j.uclim.2014.03.011.
Barnett, T. P., Pierce, D. W., AchutaRao, K. M., Gleckler, P. J., Santer, B. D., Gregory, J. M., & Washington, W. M. (2005). Penetration of human-induced warming into the world’s oceans. Science, 309(5732), 284–287. (PMID: 10.1126/science.1112418)
Barnett, T. P., Pierce, D. W., & Schnur, R. (2001). Detection of anthropogenic climate change in the world’s oceans. Science, 292(5515), 270–274. https://doi.org/10.1126/science.1058304. (PMID: 10.1126/science.1058304)
Bhardwaj, P., & Singh, O. (2021). Active and inactive tropical cyclone years over the Bay of Bengal: 1972–2015. Journal of Earth System Science, 130(2), 101. https://doi.org/10.1007/s12040-021-01597-z. (PMID: 10.1007/s12040-021-01597-z)
Bhattacharjee, S., Kumar, P., Thakur, P. K., & Gupta, K. (2021a). Hydrodynamic modelling and vulnerability analysis to assess flood risk in a dense Indian city using geospatial techniques. Natural Hazards, 105(2), 2117–2145. (PMID: 10.1007/s11069-020-04392-z)
Bhattacharjee, S., Lekshmi, K., & Bharti, R. (2021b). Time series analysis of urbanisation impact on the temperature variations off Mumbai coast. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2021, XXIV ISPRS Congress (2021 edition). https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-31-2021.
Boussetta, S., Balsamo, G., Arduini, G., Dutra, E., McNorton, J., Choulga, M., Agusti-Panareda, A., Wedi, N., Munõz-Sabater, J., de Rosnay, P., Sandu, I., Hadade, I., Carver, G., Mazzetti, C., Prudhomme, C., Yamazaki, D., & Zsoter, E. (2021). ECLand: The ECMWF land surface modelling system. Atmosphere, 12(6), 723. (PMID: 10.3390/atmos12060723)
Box, G. E. P., & JENKINS, G. M. (1970). Time-series analysis, forecasting and control. Holden-Day.
Census. (2011). Primary census abstracts, registrar general of India, ministry of home affairs, government of India. https://www.censusindia.gov.in/2011census/PCA/pca_highlights/pe_data.html . Accessed 23 June 2022.
Chen, H., Huang, F., Hu, W., Wang, C., & Zhong, L. (2022). A procedure for comparing the ecological status and transformation measures in an anthropized coastal area. Journal of Environmental Management, 301, 113928. https://doi.org/10.1016/j.jenvman.2021.113928.
Chen, F., Kusaka, H., Bornstein, R., Ching, J., Grimmond, C. S. B., Grossman-Clarke, S., Loridan, T., Manning, K. W., Martilli, A., Miao, S., Sailor, D., Salamanca, F., Taha, H., Tewari, M., Wang, X., Wyszogrodzki, A. A., & Zhang, C. (2011). The integrated WRF/urban modelling system: Development, evaluation, and applications to urban environmental problems. International Journal of Climatology, 31(2), 273–288. https://doi.org/10.1002/joc.2158. (PMID: 10.1002/joc.2158)
Chen, M., Zhang, H., Liu, W., & Zhang, W. (2014). The global pattern of urbanization and economic growth: Evidence from the last three decades. PLoS ONE, 9(8), e103799. https://doi.org/10.1371/journal.pone.0103799.
Chen, T., Wang, S., & Yen, M. (2006). Enhancement of afternoon thunderstorm activity by urbanization in a valley: Taipei. Journal of Applied Meteorology and Climatology, 46, 1324–1340. https://doi.org/10.1175/JAM2526.1. (PMID: 10.1175/JAM2526.1)
Chenard, J.-F., & Caissie, D. (2008). Stream temperature modelling using artificial neural networks: Application on Catamaran Brook, New Brunswick. Canada. Hydrol. Process, 22, 3361–3372. https://doi.org/10.1002/hyp.6928. (PMID: 10.1002/hyp.6928)
Crum, S. M., & Jenerette, G. D. (2017). Microclimate variation among urban land covers: The importance of vertical and horizontal structure in air and land surface temperature relationships. Journal of Applied Meteorology and Climatology, 56, 2531–2543. https://doi.org/10.1175/JAMC-D-17-0054.s1. (PMID: 10.1175/JAMC-D-17-0054.s1)
Dabral, P. P., & Murry, M. Z. (2017). Modelling and forecasting of rainfall time series using SARIMA. Environmental Processes, 4, 399–419. (PMID: 10.1007/s40710-017-0226-y)
Daliakopoulos, I. N., Coulibaly, P., & Tsanis, I. K. (2005). Groundwater level forecasting using artificial neural networks. Journal of Hydrology, 309(1–4), 229–240. https://doi.org/10.1016/j.jhydrol.2004.12.001. (PMID: 10.1016/j.jhydrol.2004.12.001)
Di Bernardino, A., Iannarelli, A. M., Casadio, S., Mevi, G., Campanelli, M., Casasanta, G., Cede, A., Tiefengraber, M., Siani, A., & M., Spinei, E., & Cacciani, M. (2021). On the effect of sea breeze regime on aerosols and gases properties in the urban area of Rome. Italy. Urban Climate, 37, 100842. (PMID: 10.1016/j.uclim.2021.100842)
Domingos, D. S. D. O. S., de Oliveira, J. F. L, & de Mattos Neto, P. S. G. (2019). An intelligent hybridization of ARIMA with machine learning models for time series forecasting. Knowledge-Based Systems, 175, 72–86.
Douglas, E. M., Vogel, R. M., & Kroll, C. N. (2000). Trends in floods and low flows in the United States: impact of spatial correlation. Journal of Hydrology, 240, 90–105.
Egrioglu, E., Aladag, C. K., Yolcu, U., Basaran, M. A., & Uslu, V. R. (2009). A new hybrid approach based on SARIMA and partial high order bivariate fuzzy time series forecasting model. Expert Systems with Applications, 36(4), 7424–7434. https://doi.org/10.1016/j.eswa.2008.09.040. (PMID: 10.1016/j.eswa.2008.09.040)
Fard, A. K., & Akbari-Zadeh, M. R. (2014). A hybrid method based on wavelet, ANN and ARIMA model for short-term load forecasting. Journal of Experimental & Theoretical Artificial Intelligence, 26(2), 167–182. https://doi.org/10.1080/0952813X.2013.813976. (PMID: 10.1080/0952813X.2013.813976)
Faridatul, M. I., & Wu, B. (2018). Automatic classification of major urban land covers based on novel spectral indices. ISPRS International Journal of Geo-Information, 7(12), 453. (PMID: 10.3390/ijgi7120453)
Faruk, D. O. (2010). A hybrid neural network and ARIMA model for water quality time series prediction. Engineering Applications of Artificial Intelligence, 23, 586–594. (PMID: 10.1016/j.engappai.2009.09.015)
Ferdiansyah, M. R., Inagaki, A., & Kanda, M. (2020). Detection of sea-breeze inland penetration in the coastal-urban region using geostationary satellite images. Urban Climate, 31, 100586. (PMID: 10.1016/j.uclim.2020.100586)
Gocheva-Ilieva, S., Ivanov, A. V., Voynikova, D. S., & Boyadzhiev, D. T. (2014). Time series analysis and forecasting for air pollution in small urban area: An SARIMA and factor analysis approach. Stochastic Environmental Research and Risk Assessment, 28, 1045–1060. (PMID: 10.1007/s00477-013-0800-4)
Grömping, U. (2007). Relative importance for linear regression in R: The package relaimpo. Journal of Statistical Software, 17, 1–27.
Haan, C. T. (2002). Statistical methods in hydrology (2nd ed., p. 496). The Iowa State Press.
Halpern, B. S., Walbridge, S., Selkoe, K. A., Kappel, C. V., Micheli, F., D’Agrosa, C., Bruno, J. F., Casey, K. S., Ebert, C., Fox, H. E., Fujita, R., Heinemann, D., Lenihan, H. S., Madin, E. M. P., Perry, M. T., Selig, E. R., Spalding, M., Steneck, R., & Watson, R. (2008). A global map of human impact on marine ecosystems. Science, 319(5865), 948–952. https://doi.org/10.1126/science.1149345. (PMID: 10.1126/science.1149345)
He, C., Shi, P., Xie, D., & Zhao, Y. (2010). Improving the normalized difference built-up index to map urban built-up areas using a semiautomatic segmentation approach. Remote Sensing Letters, 1(4), 213–221. (PMID: 10.1080/01431161.2010.481681)
He, Q., Zhan, H., & Cai, S. (2020). Anticyclonic eddies enhance the winter barrier layer and surface cooling in the Bay of Bengal. Journal of Geophysical Research: Oceans, 125(10), e2020JC016524.
Heever, S. C., & Cotton, W. R. (2006). Urban aerosol impacts on downwind convective storms. Journal of Applied Meteorology and Climatology, 46, 828–850. https://doi.org/10.1175/JAM2492. (PMID: 10.1175/JAM2492)
Hidalgo, J., Masson, V., Baklanov, A., Pigeon, G., & Gimenoa, L. (2008). Advances in urban climate modeling: trends and directions in climate research. Annals of the New York Academy of Sciences, 1146, 354–374.
Huang, H., Ooka, R., & Kato, S. (2005). Urban thermal environment measurements and numerical simulation for an actual complex urban area covering a large district heating and cooling system in summer. Atmospheric Environment, 39(34), 6362–6375. (PMID: 10.1016/j.atmosenv.2005.07.018)
Ioannides, Y.M., & Rossi-Hansberg, E. (2005). Urban growth. Working paper Dept. of economics. Tufts University, Medford.
Irvine, K. N., Richey, J. E., Holtgrieve, G. W., Sarkkula, J., & Sampson, M. (2011). Spatial and temporal variability of turbidity, dissolved oxygen, conductivity, temperature, and fluorescence in the lower Mekong River-Tonle Sap system identified using continuous monitoring. International Journal of River Basin Management, 9(2), 151–168. https://doi.org/10.1080/15715124.2011.621430. (PMID: 10.1080/15715124.2011.621430)
Ivakhnenko, A. G. (1970). Heuristic self-organization in problems of engineering cybernetics. Automatica, 6(2), 207–219. Crossref.
Jacobson, C. R. (2011). Identification and quantification of the hydrological impacts of imperviousness in urban catchments: A review. Journal of Environmental Management, 92, 1438–1448. https://doi.org/10.1016/j.jenvman.2011.01.018.
Jaswal, A. K., Singh, V., & Bhambak, S. R. (2012). Relationship between sea surface temperature and surface air temperature over Arabian Sea, Bay of Bengal and Indian Ocean. Journal of Indian Geophysical Union, 16(2), 41–53.
Katimon, A., Shahid, S., & Mohsenipour, M. (2018). Modeling water quality and hydrological variables using ARIMA: A case study of Johor River, Malaysia. Sustain. Water Resour. Manage, 4, 991–998. https://doi.org/10.1007/s40899-017-0202-8. (PMID: 10.1007/s40899-017-0202-8)
Khan, M. M. H., Muhammad, N. S., & El-Shafie, A (2020). Wavelet based hybrid ANN-ARIMA models for meteorological drought forecasting. Journal of Hydrology, 590, 125380. https://doi.org/10.1016/j.jhydrol.2020.125380.
Khan, T. M. A., Quadir, B. A., Murty, T. S., & Sarker, M. A. (2004). Seasonal and interannual sea surface temperature variability in the coastal cities of Arabian Sea and Bay of Bengal. Natural Hazards, 31, 549–560. (PMID: 10.1023/B:NHAZ.0000023367.66009.1d)
Khandelwal, I., Adhikari, R., & Verma, G. (2015). Time series forecasting using hybrid ARIMA and ANN models based on DWT decomposition. Procedia Computer Science, 48, 173–179. https://doi.org/10.1016/j.procs.2015.04.167. (PMID: 10.1016/j.procs.2015.04.167)
Krishnamurthy, V., & Shukla, J. (2000). Intraseasonal and interannual variability of rainfall over India. Journal of Climate, 13(24), 4366–4377. https://doi.org/10.1175/1520-0442(2000)013%3C0001:IAIVOR%3E2.0.CO;2. (PMID: 10.1175/1520-0442(2000)013%3C0001:IAIVOR%3E2.0.CO;2)
Koutsikopoulos, C., Beillois, P., Leroy, C., & Taillefer, F. (1998). Temporal trends and spatial structures of the sea surface temperature in the Bay of Biscay. Oceanologica Acta, 21(2), 335–344. https://doi.org/10.1016/S0399-1784(98)80020-0. (PMID: 10.1016/S0399-1784(98)80020-0)
Kumar, A., & Goyal, P. (2011). Forecasting of air quality in Delhi using principal component regression technique. Atmospheric Pollution Research, 2(4), 436–444. https://doi.org/10.5094/APR.2011.050. (PMID: 10.5094/APR.2011.050)
Li, K., Liu, Y., Yang, Y., Li, Z., Liu, B., Xue, L., & Yu, W. (2016). Possible role of pre-monsoon sea surface warming in driving the summer monsoon onset over the Bay of Bengal. Climate Dynamics, 47(3), 753–763. (PMID: 10.1007/s00382-015-2867-8)
Liang, L., & Gong, P. (2020). Urban and air pollution: A multi-city study of long-term effects of urban landscape patterns on air quality trends. Scientific Reports, 10(1), 1–13. (PMID: 10.1038/s41598-020-74524-9)
Machiwal, D., & Jha, M. K. (2006). Time series analysis of hydrologic data for water resources planning and management: A review. Journal of Hydrology and Hydromechanics, 54(3), 237–257.
Mahmood, R., Jia, S., & Zhu, W. (2019). Analysis of climate variability, trends, and prediction in the most active parts of the Lake Chad basin, Africa. Scientific Reports, 9(1), 6317. https://doi.org/10.1038/s41598-019-42811-9.
Mandal, T., & Jothiprakash, V. (2012). Short-term rainfall prediction using ANN and MT techniques. ISH Journal of Hydraulic Engineering, 18(1), 20–26. https://doi.org/10.1080/09715010.2012.661629. (PMID: 10.1080/09715010.2012.661629)
Maul, G. A., & Sims, H. J. (2007). Florida coastal temperature trends: Comparing independent datasets. Florida Scientist, 71–82.
MCCIP, Marine climate change impacts annual report card. (2006). Summary report, MCCIP, Lowestoft. 8pp.
McNorton, J. R., Arduini, G., Bousserez, N., Agustí‐Panareda, A., Balsamo, G., Boussetta, S., Choulga, M., Hadade, I., & Hogan, R. J. (2021). An urban scheme for the ECMWF integrated forecasting system: Single‐column and global offline application. Journal of Advances in Modeling Earth Systems, 13(6), e2020MS002375. https://doi.org/10.1029/2020MS002375.
Mills, G. (2007). Cities as agents of global change. International Journal of Climatology, 27,1849–1857.
Modarres, R., & da Silva, V. D. P. R. (2007). Rainfall trends in arid and semi-arid regions of Iran. Journal of Arid Environments, 70(2), 344–355. (PMID: 10.1016/j.jaridenv.2006.12.024)
Mudelsee, M. (2019). Trend analysis of climate time series: A review of methods. Earth-Science Review, 190, 310–322. (PMID: 10.1016/j.earscirev.2018.12.005)
Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., Harrigan, S., Hersbach, H., Martens, B., Miralles, D. G., Piles, M., Rodríguez-Fernández, N. J., Zsoter, E., Buontempo, C., & Thépaut, J. N. (2021). ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth System Science Data, 13(9), 4349–4383. (PMID: 10.5194/essd-13-4349-2021)
Nogueira, M. (2020). Inter-comparison of ERA-5, ERA-interim and GPCP rainfall over the last 40 years: Process-based analysis of systematic and random differences. Journal of Hydrology, 583, 124632. (PMID: 10.1016/j.jhydrol.2020.124632)
Nourani, V., Mogaddam, A. A., & Nadiri, A. O. (2008). An ANN-based model for spatiotemporal groundwater level forecasting. Hydrological Processes, 22, 5054–5066. https://doi.org/10.1002/hyp.7129. (PMID: 10.1002/hyp.7129)
Nourani, V., & Parhizkar, M. (2013). Conjunction of SOM-based feature extraction method and hybrid wavelet-ANN approach for rainfall–runoff modeling. Journal of Hydroinformatics, 15(3), 829–848. (PMID: 10.2166/hydro.2013.141)
Nury, A. H., Hasan, K., & Alam, M. D. B. (2017). Comparative study of wavelet-ARIMA and wavelet-ANN models for temperature time series data in northeastern Bangladesh. Journal of King Saud University – Science, 29, 47–61. https://doi.org/10.1016/j.jksus.2015.12.002.
Oke, T. R. (1988). The urban energy balance. Progresses in Physical Geography, 12(4), 471–508. (PMID: 10.1177/030913338801200401)
Oviatt, C. A. (2004). The changing ecology of temperate coastal waters during a warming trend. Estuaries, 27(6), 895–904. (PMID: 10.1007/BF02803416)
Papanastasiou, D. K., & Kittas, C. (2012). Maximum urban heat island intensity in a medium-sized coastal Mediterranean city. Theoretical and Applied Climatology, 107(3), 407–416. https://doi.org/10.1007/s00704-011-0491-z. (PMID: 10.1007/s00704-011-0491-z)
Parmar, K. S., & Bhardwaj, R. (2013). Wavelet and statistical analysis of river water quality parameters. Applied Mathematics and Computation, 219(20), 10172–10182. https://doi.org/10.1016/j.amc.2013.03.109.
Pedhazur, E. J. (1982). Multiple regression in behavioral research: Explanation and prediction, Holt, Rinehart and Winston. Crossref.
Pierce, D. W., Barnett, T. P., AchutaRao, K. M., Gleckler, P. J., Gregory, J. M., & Washington, W. M. (2006). Anthropogenic warming of the oceans: Observations and model results. Journal of Climate, 19(10), 1873–1900. https://doi.org/10.1175/JCLI3723.1. (PMID: 10.1175/JCLI3723.1)
Polydoras, G. N., Anagnostopoulos, J. S., & Ch Bergeles, G. (1998). Air quality predictions: Dispersion model vs Box-Jenkins stochastic models. An implementation and comparison for Athens, Greece. Applied Thermal Engineering, 18(11), 1037–1048. https://doi.org/10.1016/S1359-4311(98)00016-7.
Qing, X., & Niu, Y. (2018). Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM. Energy, 148, 461–468. (PMID: 10.1016/j.energy.2018.01.177)
Rahman, M., Hasan, M., & Mehedi, A. (2014). Performance of wavelet transform on models in forecasting climatic variables. In Computational intelligence techniques in earth and environmental sciences, 141–154.
Rahman, A., & Dawood, M. (2017). Spatio-statistical analysis of temperature fluctuation using Mann-Kendall and Sen’s slope approach. Climate Dynamics, 48(3), 783–797. (PMID: 10.1007/s00382-016-3110-y)
Ren, Y., Suganthan, P. N., & Srikanth, N. (2014). A comparative study of empirical mode decomposition-based short-term wind speed forecasting methods. IEEE Transactions on Sustainable Energy, 6(1), 236–244. (PMID: 10.1109/TSTE.2014.2365580)
Renn, O., Klinke, A., & Schweizer, P.-J. (2018). Risk governance: Application to urban challenges. International Journal of Disaster Risk Science, 9, 434–444. (PMID: 10.1007/s13753-018-0196-3)
Riegl, B. (2002). Effects of the 1996 and 1998 positive sea-surface temperature anomalies on corals, coral diseases and fish in the Arabian Gulf (Dubai, UAE). Marine Biology, 140(1), 29–40. (PMID: 10.1007/s002270100676)
Rosenfeld, D. (2000). Suppression of rain and snow by urban air pollution. Science, 287, 1793–1796. (PMID: 10.1126/science.287.5459.1793)
Roxy, M. K., Modi, A., Murtugudde, R., Valsala, V., Panickal, S., Prasanna Kumar, S., Ravichandran, M., Vichi, M., & Lévy, M. (2016). A reduction in marine primary productivity driven by rapid warming over the tropical Indian Ocean. Geophysical Research Letters, 43(2), 826–833. https://doi.org/10.1002/2015GL066979. (PMID: 10.1002/2015GL066979)
Roxy, M., Tanimoto, Y., Preethi, B., Terray, P., & Krishnan, R. (2013). Intraseasonal SST-precipitation relationship and its spatial variability over the tropical summer monsoon region. Climate Dynamics, 41(1), 45–61. https://doi.org/10.1007/s00382-012-1547-1. (PMID: 10.1007/s00382-012-1547-1)
Ruiz-Aguilar, J. J., Turias, I. J., & Jiménez-Come, M. J. (2009). Hybrid approaches based on SARIMA and artificial neural networks for inspection time series forecasting. Transportation Research Part e: Logistics and Transportation Review, 67, 1–13. (PMID: 10.1016/j.tre.2014.03.009)
Saâdaoui, F., & Rabbouch, H. (2014). A wavelet-based multiscale vector-ANN model to predict comovement of econophysical systems. Expert Systems With Applications, 41(13), 6017–6028. https://doi.org/10.1016/j.eswa.2014.03.030.
Sahoo, B., & Bhaskaran, P. K. (2018). Multi-hazard risk assessment of coastal vulnerability from tropical cyclones–A GIS based approach for the Odisha coast. Journal of Environmental Management, 206, 1166–1178. https://doi.org/10.1016/j.jenvman.2017.10.075. (PMID: 10.1016/j.jenvman.2017.10.075)
Sahin, M. (2012). Modelling of air temperature using remote sensing and artificial neural network in Turkey. Advances in Space Research, 50, 973–985. https://doi.org/10.1016/j.asr.2012.06.021. (PMID: 10.1016/j.asr.2012.06.021)
Salas, J. D., & Obeysekera, J. T. B. (1982). ARMA model identification of hydrologic time series. Water Resources Research, 18(4), 1011–1021. (PMID: 10.1029/WR018i004p01011)
Sen Gupta, R., Naik, S., & Varadachari, V. V. R. (1989). Environmental pollution in coastal areas of India. Ecotoxicology and Climate, John Wiley & Sons Ltd. 235–246.
Shearman, R. K., & Lentz, S. J. (2009). Long-term sea surface temperature variability along the U.S. east coast. Journal of Physical Oceanography, 40, 1004–1016. (PMID: 10.1175/2009JPO4300.1)
Shephard, J. M., & Burian, S. J. (2003). Detection of urban-induced rainfall anomalies in a major coastal city. Earth Interactions, 7(4).
Shrivastava, M., Ghosh, A., Bhattacharyya, R., & Singh, S. D. (2019). Urban pollution in India. Urban pollution: Science and management, 341–356.
Singh, O. P., Khan, T. M. A., & Rahman, M. S. (2001). Has the frequency of intense tropical cyclones increased in the north Indian Ocean. Current science, 575–580.
Singh, S., Parmar, K. S., Kumar, J., & Makkhan, S. J. S. (2020). Development of new hybrid model of discrete wavelet decomposition and autoregressive integrated moving average (ARIMA) models in application to one month forecast the casualties cases of COVID-19. Chaos, Solitons & Fractals, 135, 109866. (PMID: 10.1016/j.chaos.2020.109866)
Singh, V. K., & Roxy, M. K. (2022). A review of ocean-atmosphere interactions during tropical cyclones in the north Indian Ocean. Earth-Science Reviews, 226,.
Slini, T. H., Karatzas, K., & Moussiopoulos, N. (2002). Statistical analysis of environmental data as the basis of forecasting: An air quality application. Science of the Total Environment, 288(3), 227–237. https://doi.org/10.1016/s0048-9697(01)00991-3. (PMID: 10.1016/s0048-9697(01)00991-3)
Soltani, S., Modarres, R., & Eslamian, S. S. (2007). The use of time series modeling for the determination of rainfall climates of Iran. International Journal of Climatology, 27, 819–829. https://doi.org/10.1002/joc.1427. (PMID: 10.1002/joc.1427)
Sreelakshmi, S., & Bhaskaran, P. K. (2020). Wind-generated wave climate variability in the Indian Ocean using ERA-5 dataset. Ocean Engineering, 209, 107486. https://doi.org/10.1016/j.oceaneng.2020.107486.
Szolgayová, E., Arlt, J., Blöschl, G., & Szolgay, J. (2014). Wavelet based deseasonalization for modelling and forecasting of daily discharge series considering long range dependence. Journal of Hydrology and Hydromechanics, 62(1), 24. (PMID: 10.2478/johh-2014-0011)
Trichakis, I. C., Nikolos, I. K., & Karatzas, G. P. (2011). Artificial neural network (ANN) based modeling for karstic groundwater level simulation. Water Resour Manage, 25, 1143–1152.  https://doi.org/10.1007/s11269-010-9628-6.
United Nations. (2019). World population prospects 2019: Department of economic and social Affairs. World Population Prospects 2019.
Valdiviezo-N, J. C., Téllez-Quiñones, A., Salazar-Garibay, A., & López-Caloca, A. A. (2018). Built-up index methods and their applications for urban extraction from Sentinel 2A satellite data: Discussion. JOSA A, 35(1), 35–44. (PMID: 10.1364/JOSAA.35.000035)
Voyant, C., Muselli, M., Paoli, C., & Nivet, M. L. (2012). Numerical weather prediction (NWP) and hybrid ARMA/ANN model to predict global radiation. Energy, 39(1), 341–355. (PMID: 10.1016/j.energy.2012.01.006)
Wang, W. C., Chau, K. W., Xu, D. M., & Che, X. Y. (2015). Improving forecasting accuracy of annual runoff time series using ARIMA based on EEMD decomposition. Water Res. Manage, 29, 2655–2675. https://doi.org/10.1007/s11269-015-0962-6. (PMID: 10.1007/s11269-015-0962-6)
Wong, J. S., Zhang, Q., & Chen, Y. D. (2010). Statistical modeling of daily urban water consumption in Hong Kong: Trend, changing patterns, and forecast. Water Resources Research, 46, W03506. https://doi.org/10.1029/2009WR008147. (PMID: 10.1029/2009WR008147)
Xu, H. (2008). A new index for delineating built-up land features in satellite imagery. International Journal of Remote Sensing, 29(14), 4269–4276. (PMID: 10.1080/01431160802039957)
Xu, S., Chan, H. K., & Zhang, T. (2019). Forecasting the demand of the aviation industry using hybrid time series SARIMA-SVR approach. Transportation Research Part e: Logistics and Transportation Review, 122, 169–180. https://doi.org/10.1016/j.tre.2018.12.005. (PMID: 10.1016/j.tre.2018.12.005)
Yamamoto, Y., & Ishikawa, H. (2020). Influence of urban spatial configuration and sea breeze on land surface temperature on summer clear-sky days. Urban Climate, 31, 100578. (PMID: 10.1016/j.uclim.2019.100578)
Yang, Z. P., Lu, W. X., & Long, & Y.Q. Li, P. (2009). Application and comparison of two prediction models for groundwater levels: A case study in Western Jilin Province, China. Journal of Arid Environments, 73, 487–492. https://doi.org/10.1016/j.jaridenv.2008.11.008. (PMID: 10.1016/j.jaridenv.2008.11.008)
Zhang, G. P. (2003). Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing, 50, 159–175. (PMID: 10.1016/S0925-2312(01)00702-0)
Zhang, H., Zhang, S., Wang, P., Qin, Y., & Wang, H. (2017). Forecasting of particulate matter time series using wavelet analysis and wavelet-ARMA/ARIMA model in Taiyuan, China. Journal of the Air & Waste Management Association, 67(7), 776–788. https://doi.org/10.1080/10962247.2017.1292968. (PMID: 10.1080/10962247.2017.1292968)
Zhang, W., Villarini, G., Scoccimarro, E., & Napolitano, F. (2021). Examining the precipitation associated with medicanes in the high-resolution ERA-5 reanalysis data. International Journal of Climatology, 41, E126–E132. (PMID: 10.1002/joc.6669)
Zhang, Y., Ruckelshaus, M., Arkema, K. K., Han, B., Lu, F., Zheng, H., & Ouyang, Z. (2020). Synthetic vulnerability assessment to inform climate-change adaptation along an urbanized coast of Shenzhen, China. Journal of environmental management, 255, 109915. https://doi.org/10.1016/j.jenvman.2019.109915.
Zhao, J., Li, T., Shi, K., Qiao, Z., & Xia, Z. (2021). Evaluation of ERA-5 precipitable water vapor data in plateau areas: A case study of the northern Qinghai-Tibet Plateau. Atmosphere, 12(10), 1367. (PMID: 10.3390/atmos12101367)
Zhu, D., Zhang, K., Yang, L., Wu, S., & Li, L. (2021). Evaluation and calibration of MODIS near-infrared precipitable water vapor over China using GNSS observations and ERA-5 reanalysis dataset. Remote Sensing, 13(14), 27. (PMID: 10.3390/rs13142761)
Zou, J., Lu, N., Jiang, H., Qin, J., Yao, L., & Xin, & Y., Su, F. (2022). Performance of air temperature from ERA5-Land reanalysis in coastal urban agglomeration of Southeast China. Science of the Total Environment, 828, 154459. (PMID: 10.1016/j.scitotenv.2022.154459)
Contributed Indexing:
Keywords: ANN; ARIMA; DWT; Polynomial regression; SST; Urban climate
Entry Date(s):
Date Created: 20230519 Date Completed: 20230522 Latest Revision: 20230522
Update Code:
20240105
DOI:
10.1007/s10661-023-11214-9
PMID:
37204521
Czasopismo naukowe
Large-scale urbanization near the coasts is reported to directly impact physical and biogeochemical characteristics of near shore waters, through hydro-meteorological forcing, developing abnormalities such as coastal warming. This study attempts to understand the impact-magnitude of urban expansion on coastal sea surface temperature (SST) rise in the vicinity of six major cities along the Indian coastline. Different parameters such as air temperature (AT), relative humidity (RH), wind speed (WS), precipitation (P), land surface temperature (LST) and aerosol optical depth (AOD) representing the climate over the cities were analysed and AT was found to have highest correlation with increasing coastal SST values, specifically, along the western coast (R 2  > 0.93). Autoregressive integrated moving average (ARIMA) and artificial neural network (ANN) models were employed to analyse past (1980-2019) and forecast future (2020-2029) SST trends off all urban coasts. ANN provided comparatively better prediction accuracy with RMSE values ranging from 0.40 to 0.76 K compared to the seasonal ARIMA model (RMSE: 0.60-1 K). Prediction accuracy further improved by coupling ANN with discrete wavelet transformation (DWT) which could reduce the data noise (RMSE: 0.37-0.63 K). The entire study period (1980-2029) revealed significant and consistent increase in SST values (0.5-1 K) along the western coastal cities which varied considerably along the east coast (from north to south), indicating the influence of tropical cyclones combined with increased river influx. Such unnatural interferences in the dynamic land-atmosphere-ocean circulation not only render the coastal ecosystems vulnerable to degradation but also potentially develop a feedback effect which impacts the general climatology of the region.
(© 2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies