Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Assessment of potential health risks from heavy metal pollution of surface water for drinking in a multi-industry area in Mali using a multi-indices approach.

Tytuł:
Assessment of potential health risks from heavy metal pollution of surface water for drinking in a multi-industry area in Mali using a multi-indices approach.
Autorzy:
Sangaré LO; School of Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China.; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem, Harbin Institute of Technology, Harbin, 150090, China.
Ba S; Department of Geology and Mines, Ecole Nationale d'Ingénieurs Abderhamane Baba Touré (ENI-ABT), 410, Avenue Van Vollenhoven, BP 242, Bamako, Mali.
Diallo O; Laboratoire d Etude Et de Recherche Des Ressources Naturelles Et Des Sciences de L environnement (LERNSE), Université Nazi Boni de Bobo Dioulasso, 01 BP 1091, Bobo Dioulasso, Burkina Faso.
Sanogo D; Direction Nationale de L'Industrie (DNI), Ministère du Commerce Et de L'industrie, BP 278, Bamako, Mali.
Zheng T; School of Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China. .; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem, Harbin Institute of Technology, Harbin, 150090, China. .
Źródło:
Environmental monitoring and assessment [Environ Monit Assess] 2023 May 20; Vol. 195 (6), pp. 700. Date of Electronic Publication: 2023 May 20.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: 1998- : Dordrecht : Springer
Original Publication: Dordrecht, Holland ; Boston : D. Reidel Pub. Co., c1981-
MeSH Terms:
Drinking Water*/analysis
Water Pollutants, Chemical*/analysis
Metals, Heavy*/analysis
Neoplasms*
Child ; Adult ; Humans ; Environmental Monitoring ; Nickel/analysis ; Mali ; Risk Assessment ; Water Quality ; Rivers
References:
Adimalla, N., & Qian, H. (2020). Spatial distribution and health risk assessment of fluoride contamination in groundwater of Telangana: A state of the art. Chemie Der Erde, 80(4), 125548. https://doi.org/10.1016/j.chemer.2019.125548.
Al-Kahtany, K., Nour, H. E., Giacobbe, S., Alharbi, T., & El-Sorogy, A. S. (2023). Heavy metal pollution in surface sediments and human health assessment in southern Al-Khobar coast, Saudi Arabia. Marine Pollution Bulletin, 187(2023), 114508. https://doi.org/10.1016/j.marpolbul.2022.114508.
Amadou, A., Sighoko, D., Coulibaly, B., Traoré, C., Kamaté, B., Mallé, B. S., de Seze, M., Yoghoum, F. N. K., Eyang, S. B. B., Bourgeois, D., Curado, M. P., Bayo, S., Gormally, E., & Hainaut, P. (2022). Decrease in liver cancer incidence rates in Bamako, Mali over 28 years of population-based cancer registration (1987–2015). World Journal of Hepatology, 14(9), 1767–1777. https://doi.org/10.4254/wjh.v14.i9.1767. (PMID: 10.4254/wjh.v14.i9.1767)
Ardila, P. A. R., Alonso, R. Á., Valsero, J. J. D., García, R. M., Cabrera, F. Á., Cosío, E. L., & Laforet, S. D. (2023). Assessment of heavy metal pollution in marine sediments from southwest of Mallorca island. Spain. Environmental Science and Pollution Research, 30(2023), 16852–16866. https://doi.org/10.1007/s11356-022-25014-0. (PMID: 10.1007/s11356-022-25014-0)
Aydin, H., Ustaoğlu, F., Tepe, Y., & Soylu, E. N. (2021). Assessment of water quality of streams in northeast Turkey by water quality index and multiple statistical methods. Environmental Forensics, 22(1–2), 270–287. https://doi.org/10.1080/15275922.2020.1836074. (PMID: 10.1080/15275922.2020.1836074)
Ba, S. (2018). Le péril de la pollution sur le fleuve Niger. L’Harmatta edition 2018. p174 http://www.editions-harmattan.fr.
Ba, S., Onyeabor, E. U., & Moneke, A. N. (2022). The current legal framework for pollution control in the Niger River Basin relative to SDG 6.3. Water International, 47(8), 1217–1234. https://doi.org/10.1080/02508060.2022.2073756.
Balali-Mood, M., Naseri, K., Tahergorabi, Z., Khazdair, M. R., & Sadeghi, M. (2021). Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Frontiers in Pharmacology, 12(April), 1–19. https://doi.org/10.3389/fphar.2021.643972. (PMID: 10.3389/fphar.2021.643972)
Bortey-Sam, N., Nakayama, S. M., Ikenaka, Y., Akoto, O., Baidoo, E., Yohannes, Y. B., & Ishizuka, M. (2015). Human health risks from metals and metalloid via consumption of food animals near gold mines in Tarkwa, Ghana: Estimation of the daily intakes and target hazard quotients (THQs) Bortey-Sam,. Ecotoxicology and Environmental Safety, 111, 160–167. https://doi.org/10.1016/j.ecoenv.2014.09.008.
Dhaliwal, S. S., Setia, R., Kumar, V., Ghosh, T., Taneja, S., Singh, R., Ansari, J., Kukal, S. S., & Pateriya, B. (2021). Assessment of seasonal variations and human health risks due to heavy metals in water, soils and food crops using multi-indices approach. Environmental Earth Sciences, 80(11), 1–11. https://doi.org/10.1007/s12665-021-09686-4. (PMID: 10.1007/s12665-021-09686-4)
Díaz-Alcaide, S., Martínez-Santos, P., & Villarroya, F. (2017). A commune-level groundwater potential map for the republic of Mali. Water, 9(11), 839. https://doi.org/10.3390/w9110839. (PMID: 10.3390/w9110839)
Dimri, D., Daverey, A., Kumar, A., & Sharma, A. (2021). Monitoring water quality of River Ganga using multivariate techniques and WQI (Water Quality Index) in Western Himalayan region of Uttarakhand, India. Environmental Nanotechnology, Monitoring and Management, 15(October 2020), 100375. https://doi.org/10.1016/j.enmm.2020.100375.
DNI (Direction Nationale de l’Industrie). (2015). Rapport du Recensemment Industriel à Bamako. Ministère Du Commerce Et De L’industrie. https://doi.org/10.3726/978-1-4539-0094-9/1. (PMID: 10.3726/978-1-4539-0094-9/1)
Edet, A. E., & Offiong, O. E. (2002). Evaluation of water quality pollution indices for heavy metal contamination monitoring. A study case from Akpabuyo-Odukpani area, Lower Cross River Basin (southeastern Nigeria). GeoJournal (Vol. 57).
Egbueri, J. C., Ameh, P. D., Ezugwu, C. K., & Onwuka, O. S. (2020). Evaluating the environmental risk and suitability of hand-dug wells for drinking purposes: A rural case study from Nigeria. International Journal of Environmental Analytical Chemistry, 102(17), 5528–5548. https://doi.org/10.1080/03067319.2020.1800000. (PMID: 10.1080/03067319.2020.1800000)
Ezea, V. C., Ihedioha, J. N., Abugu, H. O., & Ekere, N. R. (2022). A multi-criteria approach to drinking and irrigation water assessment of spring water in Igbo-Etiti. Nigeria. Applied Water Science, 12(9), 220. https://doi.org/10.1007/s13201-022-01747-8. (PMID: 10.1007/s13201-022-01747-8)
Faye, O., Cisse, L., Berthe, S., Dicko, A., Ndiaye, H. T., Traore, P., Coulibaly, K., & Keita, S. (2012). Pruritus in dermatological hospital in Bamako, Mali. International Journal of Dermatology, 51(SUPPL.1), 44–47. https://doi.org/10.1111/j.1365-4632.2012.05565.x.
Fofana, Y., Traore, B., Dicko, A., Faye, O., Berthe, S., Cisse, L., Keita, A., Tall, K., Kone, M. B., & Keita, S. (2016). Profil épidémio-clinique des dermatoses chez les enfants vus en consultation dermatologique dans le service de dermatologie du centre national d’appui à la lutte contre la maladie à bamako (Mali). Pan African Medical Journal, 25(238), 1–6. https://doi.org/10.11604/pamj.2016.25.238.10564.
Gómez-Escalonilla, V., Martínez-Santos, P., & Martín-Loeches, M. (2022). Preprocessing approaches in machine-learning-based groundwater potential mapping: an application to the Koulikoro and Bamako regions, Mali. Hydrology and Earth System Sciences, 26(2), 221–243.  https://doi.org/10.5194/hess-26-221-2022.
Gyimah, R. A. A., Gyamfi, C., Anornu, G. K., Karikari, A. Y., & Tsyawo, F. W. (2021). Multivariate statistical analysis of water quality of the Densu River, Ghana. International Journal of River Basin Management, 19(2), 189–199. https://doi.org/10.1080/15715124.2020.1803337. (PMID: 10.1080/15715124.2020.1803337)
Holmes, R. R., Hart, M. L., & Kevern, J. T. (2017). Heavy metal removal capacity of individual components of permeable reactive concrete. Journal of Contaminant Hydrology, 196, 52–61. https://doi.org/10.1016/j.jconhyd.2016.12.005. (PMID: 10.1016/j.jconhyd.2016.12.005)
Jean Rodier, B. L. (2009). L’analyse de l’eau - 9ème édition - Eaux naturelles, eaux résiduaires, eau de mer | Biblio-Sciences. Biblio-Sciences (pp. 1–1579). https://www.biblio-sciences.org/2020/06/lanalyse-de-leau-9eme-edition-eaux.html.
Karimizadeh, M., & Payandeh, K. (2021). Evaluation of Heavy Metals of Lead, Nickel, Cadmium, Vanadium and Some Chemical Parameters in Surface Soils of the City of Khorramabad. Iranian Journal of Energy and Environment, 12(2), 131–142. https://doi.org/10.5829/ijee.2021.12.02.05. (PMID: 10.5829/ijee.2021.12.02.05)
Kumar, P., Dasgupta, R., Ramaiah, M., Avtar, R., Johnson, B. A., & Mishra, B. K. (2019). Hydrological simulation for predicting the future water quality of adyar river, Chennai, India. International Journal of Environmental Research and Public Health, 16(23). https://doi.org/10.3390/ijerph16234597.
Lam, E. J., Urrutia, J., Bech, J., Herrera, C., Montofré, Í. L., Zetola, V., Álvarez, F. A., & Cánovas, M. (2023). Heavy metal pollution index calculation in geochemistry assessment: A case study on Playa Las Petroleras. Environmental Geochemistry and Health, 45(2), 409–426. https://doi.org/10.1007/s10653-022-01272-2. (PMID: 10.1007/s10653-022-01272-2)
Li, T., Li, S., Liang, C., Bush, R. T., Xiong, L., & Jiang, Y. (2018). A comparative assessment of Australia’s Lower Lakes water quality under extreme drought and post-drought conditions using multivariate statistical techniques. Journal of Cleaner Production, 190, 1–11. https://doi.org/10.1016/j.jclepro.2018.04.121. (PMID: 10.1016/j.jclepro.2018.04.121)
Liu, C. W., Lin, K. H., & Kuo, Y. M. (2003). Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan. Science of the Total Environment, 313(1–3), 77–89. https://doi.org/10.1016/S0048-9697(02)00683-6. (PMID: 10.1016/S0048-9697(02)00683-6)
Liu, Z., Yuan, D., & Shen, Z. (1991). Effect of coal mine waters of variable pH on springwater quality: A case study. Environmental Geology and Water Sciences, 17(3), 219–225. https://doi.org/10.1007/BF01701702. (PMID: 10.1007/BF01701702)
Lu James, C. S., & Chen, K. Y. (1977). Migration of trace metals in interfaces of seawater and polluted surficial sediments. Environmental Science and Technology, 11(2), 174–182. https://doi.org/10.1021/es60125a004. (PMID: 10.1021/es60125a004)
Mekonnen, M. M., & Hoekstra, A. Y. (2016). Sustainability: Four billion people facing severe water scarcity. Science Advances, 2(2), 1–7. https://doi.org/10.1126/sciadv.1500323. (PMID: 10.1126/sciadv.1500323)
Mosley, L., Singh, S., & Aalbersberg, B. (2005). Water quality monitoring in Pacific island countries. Revised Edition – Suva: SOPAC, 2004, p 44. http://www.csa.com/partners/viewrecord.php?requester=gs&collection=ENV&recid=7020143.
Naveedullah, N., Hashmi, M. Z., Yu, C., Shen, C., Muhammad, N., Shen, H., & Chen, Y. (2016). Water qualitycharacterization of the Siling Reservoir (Zhejiang, China) using water quality index. Clean - Soil, Air, Water, 44(5), 553–562. https://doi.org/10.1002/clen.201400126. (PMID: 10.1002/clen.201400126)
Obasi, P. N., Eyankware, M. O., & Akudinobi, B. E. B. (2021). Characterization and evaluation of the effects of mine discharges on surface water resources for irrigation: A case study of the Enyigba Mining District. Southeast Nigeria. Applied Water Science, 11, 112. https://doi.org/10.1007/s13201-021-01400-w. (PMID: 10.1007/s13201-021-01400-w)
Olumayowa Oluwasola, H., Oluoye, O., Mohammad Bashir, S., Odewole, O. A., Onyeka Abugu, H., Akpomie, K. G., Kolade David, M., Inumidun Fagorite, V., & Aishatu Umar, M. (2021). Geochemical and health risk assessment of heavy metals concentration in soils around Oke-Ere mining area in Kogi State, Nigeria. International Journal of Environmental Analytical Chemistry, 103(3), 1–16. https://doi.org/10.1080/03067319.2020.1862817. (PMID: 10.1080/03067319.2020.1862817)
Pobi, K. K., Satpati, S., Dutta, S., Nayek, S., Saha, R. N., & Gupta, S. (2019). Sources evaluation and ecological risk assessment of heavy metals accumulated within a natural stream of Durgapur industrial zone, India, by using multivariate analysis and pollution indices. Applied Water Science, 9(58), 1–16. https://doi.org/10.1007/s13201-019-0946-4. (PMID: 10.1007/s13201-019-0946-4)
Pradeep, V., Deepika, C., Gupta, U., & Hitesh, S. (2012). Water quality analysis of an organically polluted Lake by investigating different physical and chemical parameters food and supplements view project. International Journal of Research in Chemistry and Environment. 2(1), 105–111. https://www.researchgate.net/publication/249649417.
Prasad, B., & Bose, J. M. (2001). Evaluation of the heavy metal pollution index for surface and spring water near a limestone mining area of the lower himalayas. Environmental Geology, 41(1–2), 183–188. https://doi.org/10.1007/s002540100380. (PMID: 10.1007/s002540100380)
Rahmanian, N., Hajar, S., Ali, B., Homayoonfard, M., Ali, N. J., Rehan, M., Sadef, Y., & Nizami, A. S. (2015). Analysis of physiochemical parameters to evaluate the drinking water quality in the state of Perak, Malaysia. Journal of Chemistry, 2015(Cd), 10.
Rasool, A., Farooqi, A., Xiao, T., Ali, W., Noor, S., Abiola, O., Ali, S., & Nasim, W. (2017). A review of global outlook on fluoride contamination in groundwater with prominence on the Pakistan current situation. Environmental Geochemistry and Health, 40(4), 1265–1281. https://doi.org/10.1007/s10653-017-0054-z. (PMID: 10.1007/s10653-017-0054-z)
Reagecon. (2014). ICP-MS/ICP-OES Standards. A calibre scientific company, VAT No: IE6322620F. available at: https://www.reagecon.com/en-gb/icp/single/multi/element-standards/ (last access: 2 April 2023).
Sahoo, B. P., & Sahu, H. B. (2022). Assessment of metal pollution in surface water using pollution indices and multivariate statistics: A case study of Talcher coalfield area. India. Applied Water Science, 12(9), 223. https://doi.org/10.1007/s13201-022-01743-y. (PMID: 10.1007/s13201-022-01743-y)
Sahoo, B. P., Sahu, H. B., & Pradhan, D. S. (2021). Hydrogeochemistry and surface water quality assessment of IB valley coalfield area. India. Applied Water Science, 11(9), 1–27. https://doi.org/10.1007/s13201-021-01433-1. (PMID: 10.1007/s13201-021-01433-1)
Sanga, V. F., Fabian, C., & Kimbokota, F. (2023). Heavy metal pollution in leachates and its impacts on the quality of groundwater resources around Iringa municipal solid waste dumpsite. Environmental Science and Pollution Research, 30(2023), 8110–8122. https://doi.org/10.1007/s11356-022-22760-z. (PMID: 10.1007/s11356-022-22760-z)
Sangare, L. O., Ba, S., Toure, A., Samake, M., & Zheng, T. (2023). Assessment of the water quality of the Niger River in Bamako, Mali, based on the Water quality index. Water Supply., 23(2), 671–687. https://doi.org/10.2166/ws.2023.029. (PMID: 10.2166/ws.2023.029)
Saraswat, R. K., Verghesep, S., & Pachauri, T. (2022). Assessment of water quality of Khari River in Agra District during Lockdown Period using multivariant techniques and quality indexes. Asian Journal of Chemistry, 34(1), 67–77. https://doi.org/10.14233/ajchem.2022.23411.
Sow, M., & Anderson, J. (1996). Perceptions and classification of woodland by Malinké villagers near Bamako. Mali. Unasylva, 47(186), 22–27.
Taka, M., Sillanpää, N., Niemi, T., Warsta, L., Kokkonen, T., & Setälä, H. (2022). Heavymetals fromheavy land use Spatio-temporal patterns ofurban runoff metal loads Maija. Science of the Total Environment, 817, 152855. (PMID: 10.1016/j.scitotenv.2021.152855)
Tiwari, K., Goyal, R., & Sarkar, A. (2017). GIS-Based Spatial Distribution of Groundwater Quality and Regional Suitability Evaluation for Drinking Water. Environmental Processes, 4(3), 645–662. https://doi.org/10.1007/s40710-017-0257-4. (PMID: 10.1007/s40710-017-0257-4)
Togo, B., Traoré, F., Togo, A. P., Togo, P., Diakité, A. A., Traoré, B., Touré, A., Coulibaly, Y., Traoré, C. B., Fenneteau, O., Sylla, F., Dumke, H., Diallo, M., Diallo, G., & Sidibé, T. (2019). Epidemiology and prognosis of childhood cancers at Gabriel-Touré Teaching Hospital (Bamako, Mali). Médecine Et Santé Tropicales, 24(1), 68–72. https://doi.org/10.1684/mst.2014.0291. (PMID: 10.1684/mst.2014.0291)
Toure, A., Wenbiao, D., & Keita, Z. (2018). An investigation of some water quality properties from different sources in Pelengana commune, Segou, Mali. Journal of Water Sanitation and Hygiene for Development, 8(3), 449–458. https://doi.org/10.2166/washdev.2018.172. (PMID: 10.2166/washdev.2018.172)
Toure, A., Wenbiao, D., Keita, Z., Dembele, A., & Elzaki, E. E. A. (2019). Drinking water quality and risk for human health in Pelengana commune, Segou. Mali. Journal of Water and Health, 17(4), 609–621. https://doi.org/10.2166/wh.2019.004. (PMID: 10.2166/wh.2019.004)
Traore, M. S., & Bakayoko, S. (2019). Cancers gynecologiques et mammaires dans le district de Bamako 2008 à 2017 : données du registre des cancers du Mali. Thèse de doctorat d’état. Université de Bamako. Bamako, Mali, 88 p. https://bibliosante.ml/handle/123456789/2123.
Traore, A. Z., Bokar, H., Sidibe, A., Upton, K., Ó Dochartaigh, B., & Bellwood-Howard, I. (2018). Africa groundwater atlas: hydrogeology of Mali, available at:  http://earthwise.bgs.ac.uk/index.php/Hydrogeology_of_Mali (last access: 27 March 2023).
Téguété, I., Tounkara, F. K., Diawara, B., Traoré, S., Koné, D., Bagayogo, A., & Traoré, C. B. (2021). A population-based combination strategy to improve the cervical cancer screening coverage rate in Bamako, Mali. Acta Obstetricia Gynecologica Scandinavica, 100(4), 794–801. https://doi.org/10.1111/aogs.14119.
U.S. E.P.A. (2009). National Primary Drinking Water Guidelines. In D. United State Environmental Protection Agency, Washington (Ed.), Epa 816-F-09–004 (EPA816-F-0 ed., Vol. 1). https://www.epa.gov/sites/production/files/2016-06/documents/npwdr_complete_table.pdf.
Ukah, B. U., Egbueri, J. C., Unigwe, C. O., & Ubido, O. E. (2019). Extent of heavy metals pollution and health risk assessment of groundwater in a densely populated industrial area, Lagos, Nigeria. International Journal of Energy and Water Resources, 3(4), 291–303. https://doi.org/10.1007/s42108-019-00039-3. (PMID: 10.1007/s42108-019-00039-3)
UNFPA. (2020). Mali : Étude monographique sur la Démographie, la Paix et la Sécurité au Sahel. Rapports Techniques Et Document, 56.
UN-Water. (2021). The United Nations World Water Development Report 2021: Valuing water. UNESCO edition 2021. 75352 Paris 07 SP, France. p 206. https://doi.org/10.4324/9780429453571-2.
Varol, M. (2019). Arsenic and trace metals in a large reservoir: Seasonal and spatial variations, source identification and risk assessment for both residential and recreational users. Chemosphere, 228, 1–8. https://doi.org/10.1016/j.chemosphere.2019.04.126. (PMID: 10.1016/j.chemosphere.2019.04.126)
Varol, M. (2020). Spatio-temporal changes in surface water quality and sediment phosphorus content of a large reservoir in Turkey. Environmental Pollution, 259, 113860. https://doi.org/10.1016/j.envpol.2019.113860.
Weerasekara, P. (2017). The United Nations World Water Development Report 2017 Wastewater. Journal on Food, Agriculture and Society, 5(2), 80–81.
WHO. (2011). Guidelines for drinking-water quality: Fourth edition incorporating the first addendum. Proceedings of the Royal Society of Medicine, 55, 631. https://doi.org/10.5005/jp/books/11431_8.
Zeng, J., Ke, W., Deng, M., Tan, J., Li, C., Cheng, Y., & Xue, S. (2023). A practical method for identifying key factors in the distribution and formation of heavy metal pollution at a smelting site. Journal of Environmental Sciences, 127(2023), 552–563. https://doi.org/10.1016/j.jes.2022.06.026. (PMID: 10.1016/j.jes.2022.06.026)
Zhao, Y., Gao, L., Zha, F., Chen, X., Zhou, X., Wang, X., Chen, Y., & Pan, X. (2021). Research on heavy metal level and co-occurrence network in typical ecological fragile area. Journal of Environmental Health Science and Engineering, 19(1), 531–540. https://doi.org/10.1007/s40201-021-00625-w. (PMID: 10.1007/s40201-021-00625-w)
Grant Information:
No.2021010 Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem
Contributed Indexing:
Keywords: Hazard index; Health risk; Heavy metal pollution; Niger River; Probability of cancer risk; Water pollution index
Substance Nomenclature:
7OV03QG267 (Nickel)
0 (Drinking Water)
0 (Water Pollutants, Chemical)
0 (Metals, Heavy)
Entry Date(s):
Date Created: 20230520 Date Completed: 20230522 Latest Revision: 20230522
Update Code:
20240105
DOI:
10.1007/s10661-023-11258-x
PMID:
37209278
Czasopismo naukowe
The Niger River, Bamako's population's primary drinking water source, is threatened by human activities. This study examines the Niger River pollution trend using heavy metals pollution indexes and Bamako's population's non-carcinogenic and carcinogenic related health risks. Parameters were monitored at fifteen sampling locations in low and high flow seasons. pH (7.30-7.50) and fluoride (0.15-0.26 mg/L) were within the normal drinking water range. Among seven heavy metals (copper, zinc, cadmium, nickel, iron, manganese, and lead), the latter three were above the drinking water standard. The degree of contamination was negative, pointing to better water quality. However, the heavy metal evaluation index (HEI) was below the mean (5.88), between the mean and twice the mean, indicating a low and medium degree of pollution. Besides, heavy metal pollution indexes (HPI) were above the standard value (100), explaining a low-medium pollution level. High values of HPI could be explained by the industrial units' intensive activities coupled with the runoff effect. The hazard index (HI) indicated a low and medium non-carcinogenic health risk for adults and children. The probability of cancer risk (PCR) of nickel showed a cancer risk. Therefore, the river was polluted with trace elements and could not be used for drinking water without any treatment.
(© 2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies