Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Spatial correlation of the EC-0.57 eV trap state with edge dislocations in epitaxial n-type gallium nitride.

Tytuł:
Spatial correlation of the EC-0.57 eV trap state with edge dislocations in epitaxial n-type gallium nitride.
Autorzy:
Galiano, K.
Deitz, J. I.
Carnevale, S. D.
Gleason, D. A.
Paul, P. K.
Zhang, Z.
McSkimming, B. M.
Speck, J. S.
Ringel, S. A.
Grassman, T. J.
Arehart, A. R.
Pelz, J. P.
Temat:
SEMICONDUCTOR defects
GALLIUM nitride epitaxy
GALLIUM nitride
ELECTRON mobility measurement
RADIO frequency measurement
SCANNING probe microscopy
CRYSTALLOGRAPHY
Źródło:
Journal of Applied Physics; 2018, Vol. 123 Issue 22, pN.PAG-N.PAG, 8p, 4 Diagrams, 1 Graph
Czasopismo naukowe
Defects in semiconductors lead to deleterious effects in electron devices, but identifying their physical sources can be difficult. An example of this in gallium nitride (GaN) high electron mobility transistors is the well-known trap state located at approximately EC-0.57 eV. This trap is strongly correlated with output power degradation and reliability issues, but despite two decades of study, its specific physical source is still unknown. To address this long-standing question, two complementary nm-resolution characterization techniques—scanning probe deep level transient spectroscopy (SP-DLTS) and electron channeling contrast imaging (ECCI)—were used to spatially map the lateral distribution of these traps and to image and characterize their relation to residual threading dislocations within NH3-MBE-grown n-type GaN. Direct comparison of the SP-DLTS and ECCI measurements on the same sample region reveals highly localized concentrations of EC-0.57 eV traps that are spatially correlated with pure edge type threading dislocations in the GaN, but not with mixed and/or screw type dislocations, indicating that the specific dislocation character is a defining factor for this particular defect level. This work demonstrates the efficacy of combining these two techniques to obtain energy-, location-, and structure-resolved characterization of defects in a functional device structure. [ABSTRACT FROM AUTHOR]
Copyright of Journal of Applied Physics is the property of American Institute of Physics and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies