Dear user, the application need JavaScript support. Please enable JavaScript in your browser.

You are browsing as a GUEST
Title of the item:

A Study on the Seepage Flow Characteristics and Disaster-Causing Mechanism of Collapse Column.

Title :
A Study on the Seepage Flow Characteristics and Disaster-Causing Mechanism of Collapse Column.
Authors :
Feng, Feisheng
Peng, Suping
Fu, Pingjie
Du, Wenfeng
Xu, Dongjing
Show more
Subject Terms :
COLUMN fracture
MINING engineering
Source :
Advances in Civil Engineering; 9/30/2018, p1-9, 9p
Academic Journal
Factors such as the hydrogeological conditions, the lithological characteristics of the columns’ components, and the lithological characteristics and stress conditions of the coal seam roof and floor are interrelated and jointly affect column collapse. In this study, the disaster-causing mechanism of column collapse was studied. Based on the system theory, a collapsed column is divided into the column and the surrounding fissure zone as two subsystems for analysis. And, the permeability coefficient of the broken rock under different conditions was measured by a self-designed equipment. The variations of the permeability coefficient for rock samples with different particle diameters, different axial pressures Pa, and different seepage velocities were further studied. Through phenomena analysis and experimental data processing, it was concluded that, under the same pressure state, smaller particle diameter meant smaller permeability coefficient; with the increase of axial pressure, the permeability coefficient decreased; and the larger the water flow velocity was, the smaller the permeability coefficient became. For particle diameter Φ = 2.5–5 mm or larger, the tiny particles formed by randomly washing and breaking in the water flow blocked some of the channels. For particle diameters smaller than Φ = 2.5–5 mm, the smaller permeability coefficient was attributed to the turbulence resulting from non-Darcy flow. The study on the permeability of the fractured rock mass clarified the mechanism of water inrush from the fissure zone of the collapsed column: the collapsed column itself was impermeable, and the permeability of the fissure zone around the collapsed column was related to the lithological characteristics of the rock within the fissure zone and the sequencing of rock strata. When mining coal in areas with collapsed columns, experiments on collapsed columns and fissure zones are prerequisites. This study has a certain referential value for coal mining in this region. [ABSTRACT FROM AUTHOR]
Copyright of Advances in Civil Engineering is the property of Hindawi Limited and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

We use cookies to help identify your computer so we can tailor your user experience, track shopping basket contents and remember where you are in the order process.