Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Assessing the Genetic Correlations Between Blood Plasma Proteins and Osteoporosis: A Polygenic Risk Score Analysis.

Tytuł:
Assessing the Genetic Correlations Between Blood Plasma Proteins and Osteoporosis: A Polygenic Risk Score Analysis.
Autorzy:
Liang, Xiao
Du, Yanan
Wen, Yan
Liu, Li
Li, Ping
Zhao, Yan
Ding, Miao
Cheng, Bolun
Cheng, Shiqiang
Ma, Mei
Zhang, Lu
Shen, Hui
Tian, Qing
Guo, Xiong
Zhang, Feng
Deng, Hong-Wen
Temat:
GENETIC correlations
BLOOD plasma
PROTEINS
OSTEOPOROSIS
BONE density
BONE metabolism
Źródło:
Calcified Tissue International; Feb2019, Vol. 104 Issue 2, p171-181, 11p
Czasopismo naukowe
Osteoporosis is a common metabolic bone disease. The impact of global blood plasma proteins on the risk of osteoporosis remains elusive now. We performed a large-scale polygenic risk score (PRS) analysis to evaluate the potential effects of blood plasma proteins on the development of osteoporosis in 2286 Caucasians, including 558 males and 1728 females. Bone mineral density (BMD) and bone areas at ulna & radius, hip, and spine were measured using Hologic 4500W DXA. BMD/bone areas values were adjusted for age, sex, height, and weight as covariates. Genome-wide SNP genotyping of 2286 Caucasian subjects was performed using Affymetrix Human SNP Array 6.0. The 267 blood plasma proteins-associated SNP loci and their genetic effects were obtained from recently published genome-wide association study (GWAS) using a highly multiplexed aptamer-based affinity proteomics platform. The polygenetic risk score (PRS) of study subjects for each blood plasma protein was calculated from the genotypes data of the 2286 Caucasian subjects by PLINK software. Pearson correlation analysis of individual PRS values and BMD/bone area value was performed using R. Additionally, gender-specific analysis also was performed by Pearson correlation analysis. 267 blood plasma proteins were analyzed in this study. For BMD, we observed association signals between 41 proteins and BMD, mainly including whole body total BMD versus Factor H (p value = 9.00 × 10-3), whole body total BMD versus BGH3 (p value = 1.40 × 10-2), spine total BMD versus IGF-I (p value = 2.15 × 10-2), and spine total BMD versus SAP (p value = 3.90 × 10-2). As for bone areas, association evidence was observed between 45 blood plasma proteins and bone areas, such as ferritin versus spine area (p value = 1.90 × 10-2), C4 versus hip area (p value = 1.25 × 10-2), and hemoglobin versus right ulna and radius area (p value = 2.70 × 10-2). Our study results suggest the modest impact of blood plasma proteins on the variations of BMD/bone areas, and identify several candidate blood plasma proteins for osteoporosis. [ABSTRACT FROM AUTHOR]
Copyright of Calcified Tissue International is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies