Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Przeglądasz jako GOŚĆ
Tytuł pozycji:

Detection of DoS attacks in cloud networks using intelligent rule based classification system.

Tytuł :
Detection of DoS attacks in cloud networks using intelligent rule based classification system.
Autorzy :
Rajendran, Rakesh
Santhosh Kumar, S. V. N.
Palanichamy, Yogesh
Arputharaj, Kannan
Pokaż więcej
Temat :
DENIAL of service attacks
INTELLIGENT networks
CLASSIFICATION algorithms
FEATURE selection
CLASSIFICATION
Źródło :
Cluster Computing; Jan2019 Supplement 1, Vol. 22 Issue 1, p423-434, 12p
Czasopismo naukowe
Cloud Network has emerged as one of the most adopted technologies both among the end-users and the developers. Despite cloud networks being popular, security in cloud remains a pivotal research challenge and a topic that is much discussed about. Denial of service (DoS) attack is carried out in cloud by one or more perpetrators using multiple compromised nodes to flood a specific target and thereby resulting in unavailability of services. Classification methods can be used effectively to identify attack signature or recurring patterns of such DoS attacks. Therefore, classification using machine learning techniques have been used in this work for feature selection and classification in order to identify the DoS attacks. For this purpose, a new rule based approach for detecting the DoS attacks which uses a domain expert's knowledge has been proposed in this paper. Moreover, two new algorithms namely Feature Selection Algorithm using Scoring and Ranking and Rule based Classification Algorithm for detecting DoS Attacks are proposed in this paper in which the final classification is carried out by applying the rules from the rule base and is validated using a domain-expert. We have evaluated the proposed system on an experimental set-up on cloud and used real time DoS tools and observed that the proposed method achieved better DoS attack detection accuracy than the existing classification algorithms used for security. [ABSTRACT FROM AUTHOR]
Copyright of Cluster Computing is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies