Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Age‐ and disease‐specific changes of the kynurenine pathway in Parkinson's and Alzheimer's disease.

Tytuł:
Age‐ and disease‐specific changes of the kynurenine pathway in Parkinson's and Alzheimer's disease.
Autorzy:
Sorgdrager, Freek J. H.
Vermeiren, Yannick
Faassen, Martijn
Ley, Claude
Nollen, Ellen A. A.
Kema, Ido P.
De Deyn, Peter P.
Temat:
ALZHEIMER'S disease
CEREBROSPINAL fluid
QUINOLINIC acid
DRUG residues
PARKINSON'S disease
CEREBROSPINAL fluid examination
METHYL aspartate receptors
MASS spectrometry
Źródło:
Journal of Neurochemistry; Dec2019, Vol. 151 Issue 5, p656-668, 13p
Czasopismo naukowe
The kynurenine (Kyn) pathway, which regulates neuroinflammation and N‐methyl‐d‐aspartate receptor activation, is implicated in Parkinson's disease (PD) and Alzheimer's disease (AD). Age‐related changes in Kyn metabolism and altered cerebral Kyn uptake along large neutral amino acid transporters, could contribute to these diseases. To gain further insight into the role and prognostic potential of the Kyn pathway in PD and AD, we investigated systemic and cerebral Kyn metabolite production and estimations of their transporter‐mediated uptake in the brain. Kyn metabolites and large neutral amino acids were retrospectively measured in serum and cerebrospinal fluid (CSF) of clinically well‐characterized PD patients (n = 33), AD patients (n = 33), and age‐matched controls (n = 39) using solid‐phase extraction‐liquid chromatographic‐tandem mass spectrometry. Aging was disease independently associated with increased Kyn, kynurenic acid and quinolinic acid in serum and CSF. Concentrations of kynurenic acid were reduced in CSF of PD and AD patients (p = 0.001; p = 0.002) but estimations of Kyn brain uptake did not differ between diseased and controls. Furthermore, serum Kyn and quinolinic acid levels strongly correlated with their respective content in CSF and Kyn in serum negatively correlated with AD disease severity (p = 0.002). Kyn metabolites accumulated with aging in serum and CSF similarly in PD patients, AD patients, and control subjects. In contrast, kynurenic acid was strongly reduced in CSF of PD and AD patients. Differential transporter‐mediated Kyn uptake is unlikely to majorly contribute to these cerebral Kyn pathway disturbances. We hypothesize that the combination of age‐ and disease‐specific changes in cerebral Kyn pathway activity could contribute to reduced neurogenesis and increased excitotoxicity in neurodegenerative disease. [ABSTRACT FROM AUTHOR]
Copyright of Journal of Neurochemistry is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies