Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Przeglądasz jako GOŚĆ
Tytuł pozycji:

Comparing the Performance of Naive Bayes And Decision Tree Classification Using R.

Tytuł :
Comparing the Performance of Naive Bayes And Decision Tree Classification Using R.
Autorzy :
Yadav, Kirtika
Thareja, Reema
Pokaż więcej
Temat :
NAIVE Bayes classification
Źródło :
International Journal of Intelligent Systems & Applications; Dec2019, Vol. 11 Issue 12, p11-19, 9p
Czasopismo naukowe
The use of technology is at its peak. Many companies try to reduce the work and get an efficient result in a specific amount of time. But a large amount of data is being processed each day that is being stored and turned into large datasets. To get useful information, the dataset needs to be analyzed so that one can extract knowledge by training the machine. Thus, it is important to analyze and extract knowledge from a large dataset. In this paper, we have used two popular classification techniques- Decision tree and Naive Bayes to compare the performance of the classification of our data set. We have taken student performance dataset that has 480 observations. We have classified these students into different groups and then calculated the accuracy of our classification by using the R language. Decision tree uses a divide and conquer method including some rules that makes it easy for humans to understand. The Naive Bayes theorem includes an assumption that the pair of features being classified are independent. It is based on the Bayes theorem. [ABSTRACT FROM AUTHOR]
Copyright of International Journal of Intelligent Systems & Applications is the property of Modern Education & Computer Science Press and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies