## Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Przeglądasz jako GOŚĆ
Tytuł pozycji:

# Explicit Exact Solutions of the (2+1)-Dimensional Integro-Differential Jaulent–Miodek Evolution Equation Using the Reliable Methods.

Tytuł :
Explicit Exact Solutions of the (2+1)-Dimensional Integro-Differential Jaulent–Miodek Evolution Equation Using the Reliable Methods.
Autorzy :
Kaewta, Supaporn
Sirisubtawee, Sekson
Khansai, Nattawut
Pokaż więcej
Temat :
EVOLUTION equations
NONLINEAR differential equations
PARTIAL differential equations
ALGEBRAIC equations
NONLINEAR evolution equations
ORDINARY differential equations
HAMILTON-Jacobi equations
Źródło :
International Journal of Mathematics & Mathematical Sciences; 4/27/2020, p1-19, 19p
Czasopismo naukowe
In this article, we utilize the G ′ / G 2 -expansion method and the Jacobi elliptic equation method to analytically solve the (2 + 1)-dimensional integro-differential Jaulent–Miodek equation for exact solutions. The equation is shortly called the Jaulent–Miodek equation, which was first derived by Jaulent and Miodek and associated with energy-dependent Schrödinger potentials (Jaulent and Miodek, 1976; Jaulent, 1976). The equation is converted into a fourth order partial differential equation using a transformation. After applying a traveling wave transformation to the resulting partial differential equation, we obtain an ordinary differential equation which is the main equation to which the both schemes are applied. As a first step, the two methods give us distinguish systems of algebraic equations. The first method provides exact traveling wave solutions including the logarithmic function solutions of trigonometric functions, hyperbolic functions, and polynomial functions. The second approach provides the Jacobi elliptic function solutions depending upon their modulus values. Some of the obtained solutions are graphically characterized by the distinct physical structures such as singular periodic traveling wave solutions and peakons. A comparison between our results and the ones obtained from the previous literature is given. Obtaining the exact solutions of the equation shows the simplicity, efficiency, and reliability of the used methods, which can be applied to other nonlinear partial differential equations taking place in mathematical physics. [ABSTRACT FROM AUTHOR]
Copyright of International Journal of Mathematics & Mathematical Sciences is the property of Hindawi Limited and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies