Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Prediction of thermal distribution and fluid flow in the domain with multi-solid structures using Cubic-Interpolated Pseudo-Particle model.

Tytuł:
Prediction of thermal distribution and fluid flow in the domain with multi-solid structures using Cubic-Interpolated Pseudo-Particle model.
Autorzy:
Nguyen, Quyen
Babanezhad, Meisam
Taghvaie Nakhjiri, Ali
Rezakazemi, Mashallah
Shirazian, Saeed
Temat:
FLUID flow
HEAT transfer fluids
NANOFLUIDICS
FORECASTING
HEAT transfer
DOMAIN walls (String models)
Źródło:
PLoS ONE; 6/18/2020, Vol. 15 Issue 6, p1-12, 12p
Czasopismo naukowe
A nanofluid is a suspension of very small solid particles in a continuous fluid with significant improvement of heat transfer characteristics in the main liquid. In general, in industrial equipment, the heat transfer rate can be improved with optimization of equipment including the domain structure and using the different types of nanofluids. Still, there is a big challenge to analyze the heat transfer and fluid circulation in the domain. Having nanofluids with experimental observation as using sensors and probes are destructive for the liquid stream and they are costly to observe the details of particles and the original fluid. Over the 20 years, different numerical methods have been implemented in the modeling of the heat and fluid distribution in industrial equipment containing nanofluids. Among all mathematical and numerical methods, Cubic-Interpolated Pseudo-Particle (CIP) model provides a strong potential in the prediction of the fluid structure and heat analysis, when there is a complex structure of thermal walls and high concentration of nanoparticles. However, this method is not frequently used by researchers in nanofluids analysis. In this study, the Cubic-Interpolated Pseudo-Particle model is applied to predict the flow in the square domain. different thermal walls (multi-solid structure) and hot cylindrical wall are specifically used to observe the fluid flow and heat distribution in the domain. Additionally, for a better understanding of the flow in the domain, different numbers of cylinders are used and also different amounts of nanofluid in the continuous fluid are added. The results show that adding more walls in the domain causes the change in the vortex structure. Furthermore, using nanofluid results in better heat transfer rate in the system. The CIP method is also a capable tool to predict the heat and fluid flow in the multi-solid structure domain. [ABSTRACT FROM AUTHOR]
Copyright of PLoS ONE is the property of Public Library of Science and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies