Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Process enhancement using hydrogen-induced shielding: H2-induced A-TIG welding process.

Tytuł:
Process enhancement using hydrogen-induced shielding: H2-induced A-TIG welding process.
Autorzy:
Tathgir, Surinder
Rathod, Dinesh W.
Batish, Ajay
Temat:
GAS tungsten arc welding
DUPLEX stainless steel
WELDING
DEPTH profiling
PECLET number
STEEL pipe
Źródło:
Materials & Manufacturing Processes; 2020, Vol. 35 Issue 10, p1084-1095, 12p
Czasopismo naukowe
Deeper penetration in a gas tungsten arc welding process is the essential requirement for the fabrication of duplex stainless steel pipes. Activated fluxes and associated activated tungsten inert gas' (A-TIG) welding process has proved itself as the better option for improved dilution and the deeper penetration. Use of hydrogen in shielding environment of A-TIG process for different ranges of activated fluxes needs to assess for deeper penetration and associated weld properties. Present investigation addresses the issue of deeper penetration using different activated fluxes in A-TIG process along with mixing of 2.5% H2 in the argon gas shielding. An effect of H2-induced shielding during CrO3, MoS2, TiO2, and SiO2 fluxes in A-TIG process has been investigated with weld pool morphology, depth of penetration, weld chemistry, scanning electron microscopy, optical microscopy, energy dispersive spectroscopy, and X-ray diffraction analysis. The extra heat produced due to activated fluxes in H2-induced shielding have been quantify in the study. The decomposed oxygen in the weld pool reacts with hydrogen in shielding and enhances the arc density. The growths of ferrite and austenite grains as well as the dendrite arm spacing have been significantly affected due to the presence of H2 in the shielding. Oxide-based fluxes with H2-induced shielding could promote the arc constriction behavior and Peclet number with enhanced heat density. [ABSTRACT FROM AUTHOR]
Copyright of Materials & Manufacturing Processes is the property of Taylor & Francis Ltd and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies