Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Przeglądasz jako GOŚĆ
Tytuł pozycji:

On the Functional Equivalence of TSK Fuzzy Systems to Neural Networks, Mixture of Experts, CART, and Stacking Ensemble Regression.

Tytuł :
On the Functional Equivalence of TSK Fuzzy Systems to Neural Networks, Mixture of Experts, CART, and Stacking Ensemble Regression.
Autorzy :
Wu, Dongrui
Lin, Chin-Teng
Huang, Jian
Zeng, Zhigang
Pokaż więcej
Temat :
FUZZY neural networks
FUZZY systems
MATHEMATICAL equivalence
MACHINE learning
Źródło :
IEEE Transactions on Fuzzy Systems; Oct2020, Vol. 28 Issue 10, p2570-2580, 11p
Czasopismo naukowe
Fuzzy systems have achieved great success in numerous applications. However, there are still many challenges in designing an optimal fuzzy system, e.g., how to efficiently optimize its parameters, how to balance the trade-off between cooperations and competitions among the rules, how to overcome the curse of dimensionality, how to increase its generalization ability, etc. Literature has shown that by making appropriate connections between fuzzy systems and other machine learning approaches, good practices from other domains may be used to improve the fuzzy systems, and vice versa. This article gives an overview on the functional equivalence between Takagi–Sugeno–Kang fuzzy systems and four classic machine learning approaches—neural networks, mixture of experts, classification and regression trees, and stacking ensemble regression—for regression problems. We also point out some promising new research directions, inspired by the functional equivalence, that could lead to solutions to the aforementioned problems. To our knowledge, this is so far the most comprehensive overview on the connections between fuzzy systems and other popular machine learning approaches, and hopefully will stimulate more hybridization between different machine learning algorithms. [ABSTRACT FROM AUTHOR]
Copyright of IEEE Transactions on Fuzzy Systems is the property of IEEE and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies