Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Przeglądasz jako GOŚĆ
Tytuł pozycji:

Molecular motions of acetonitrile molecules in the solvation shell of lithium ions.

Tytuł :
Molecular motions of acetonitrile molecules in the solvation shell of lithium ions.
Autorzy :
Chen, Xiaobing
Kuroda, Daniel G.
Pokaż więcej
Temat :
SOLVATION
ACETONITRILE
LASER spectroscopy
MOLECULAR dynamics
ENERGY consumption
ION pairs
LITHIUM ions
INFRARED spectroscopy
Źródło :
Journal of Chemical Physics; 10/28/2020, Vol. 153 Issue 16, p1-10, 10p
Czasopismo naukowe
Lithium ion solutions in organic solvents have become ubiquitous because of their use in energy storage technologies. The widespread use of lithium salts has prompted a large scientific interest in elucidating the molecular mechanisms, giving rise to their macroscopic properties. Due to the complexity of these molecular systems, only few studies have been able to unravel the molecular motions and underlying mechanisms of the lithium ion (Li+) solvation shell. Lately, the atomistic motions of these systems have become somewhat available via experiments using ultrafast laser spectroscopies, such as two-dimensional infrared spectroscopy. However, the molecular mechanism behind the experimentally observed dynamics is still unknown. To close this knowledge gap, this work investigated solutions of a highly dissociated salt [LiTFSI: lithium bis(trifluoromethanesulfonyl)imide] and a highly associated salt (LiSCN: lithium thiocyanate) in acetonitrile (ACN) using both experimental and theoretical methods. Linear and non-linear infrared spectroscopies showed that Li+ is found as free ions and contact ion pairs in ACN/LiTFSI and ACN/LiSCN systems, respectively. In addition, it was also observed from the non-linear spectroscopy experiments that the dynamics of the ACN molecules in the Li+ first solvation shell has a characteristic time of ∼1.6 ps irrespective of the ionic speciation of the cation. A similar characteristic time was deducted from ab initio molecular dynamics simulations and density functional theory computations. Moreover, the theoretical calculations showed that molecular mechanism is directly related to fluctuations in the angle between Li+ and the coordinated ACN molecule (Li+⋯N≡C), while other structural changes such as the change in the distance between the cation and the solvent molecule (Li+⋯N) play a minor role. Overall, this work uncovers the time scale of the solvent motions in the Li+ solvation shell and the underlying molecular mechanisms via a combination of experimental and theoretical tools. [ABSTRACT FROM AUTHOR]
Copyright of Journal of Chemical Physics is the property of American Institute of Physics and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies