Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Identification of Exploration and Exploitation Balance in the Silkmoth Olfactory Search Behavior by Information-Theoretic Modeling.

Tytuł:
Identification of Exploration and Exploitation Balance in the Silkmoth Olfactory Search Behavior by Information-Theoretic Modeling.
Autorzy:
Hernandez-Reyes, Cesar A.
Fukushima, Shumpei
Shigaki, Shunsuke
Kurabayashi, Daisuke
Sakurai, Takeshi
Kanzaki, Ryohei
Sezutsu, Hideki
Temat:
SEARCHING behavior
INSECT behavior
HUMAN behavior models
SEARCH engines
BLUE light
SMELL
Źródło:
Frontiers in Computational Neuroscience; 2/1/2021, Vol. 15, pN.PAG-N.PAG, 12p
Czasopismo naukowe
Insects search for and find odor sources as their basic behaviors, such as when looking for food or a mate. This has motivated research to describe how they achieve such behavior under turbulent odor plumes with a small number of neurons. Among different insects, the silk moth has been studied owing to its clear motor response to olfactory input. In past studies, the "programmed behavior" of the silk moth has been modeled as the average duration of a sequence of maneuvers based on the duration of periods without odor hits. However, this model does not fully represent the fine variations in their behavior. In this study, we used silk moth olfactory search trajectories from an experimental virtual reality device. We achieved an accurate input by using optogenetic silk moths that react to blue light. We then modeled such trajectories as a probabilistic learning agent with a belief of possible source locations. We found that maneuvers mismatching the programmed behavior are related to larger entropy decrease, that is, they are more likely to increase the certainty of the belief. This implies that silkmoths include some stochasticity in their search policy to balance the exploration and exploitation of olfactory information by matching or mismatching the programmed behavior model. We believe that this information-theoretic representation of insect behavior is important for the future implementation of olfactory searches in artificial agents such as robots. [ABSTRACT FROM AUTHOR]
Copyright of Frontiers in Computational Neuroscience is the property of Frontiers Media S.A. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies