Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

A multiscale compartment-based model of stochastic gene regulatory networks using hitting-time analysis.

Tytuł:
A multiscale compartment-based model of stochastic gene regulatory networks using hitting-time analysis.
Autorzy:
Coulier, Adrien
Hellander, Stefan
Hellander, Andreas
Temat:
MULTISCALE modeling
STOCHASTIC models
GENE regulatory networks
REACTION-diffusion equations
GENETIC regulation
SETTLEMENT costs
Źródło:
Journal of Chemical Physics; 5/14/2021, Vol. 154 Issue 18, p1-13, 13p
Czasopismo naukowe
Spatial stochastic models of single cell kinetics are capable of capturing both fluctuations in molecular numbers and the spatial dependencies of the key steps of intracellular regulatory networks. The spatial stochastic model can be simulated both on a detailed microscopic level using particle tracking and on a mesoscopic level using the reaction–diffusion master equation. However, despite substantial progress on simulation efficiency for spatial models in the last years, the computational cost quickly becomes prohibitively expensive for tasks that require repeated simulation of thousands or millions of realizations of the model. This limits the use of spatial models in applications such as multicellular simulations, likelihood-free parameter inference, and robustness analysis. Further approximation of the spatial dynamics is needed to accelerate such computational engineering tasks. We here propose a multiscale model where a compartment-based model approximates a detailed spatial stochastic model. The compartment model is constructed via a first-exit time analysis on the spatial model, thus capturing critical spatial aspects of the fine-grained simulations, at a cost close to the simple well-mixed model. We apply the multiscale model to a canonical model of negative-feedback gene regulation, assess its accuracy over a range of parameters, and demonstrate that the approximation can yield substantial speedups for likelihood-free parameter inference. [ABSTRACT FROM AUTHOR]
Copyright of Journal of Chemical Physics is the property of American Institute of Physics and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies