Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Metabolic cost of osmoregulation by the gastro-intestinal tract in marine teleost fish.

Tytuł:
Metabolic cost of osmoregulation by the gastro-intestinal tract in marine teleost fish.
Autorzy:
Little, A.
Pasparakis, C.
Stieglitz, J.
Grosell, M.
Temat:
OSMOREGULATION
MARINE fishes
ION transport (Biology)
SETTLEMENT costs
ESOPHAGUS
Źródło:
Frontiers in Physiology; 2023, p1-10, 10p
Czasopismo naukowe
Introduction: Although dozens of studies have attempted to determine the metabolic cost of osmoregulation, mainly by comparing standard metabolic rates (SMR) in fish acclimated to different salinities, consensus is still lacking. Methods: In the present study, using the Gulf toadfish, Opsanus beta, we aimed to determine the metabolic cost of esophageal and intestinal osmoregulatory processes by estimating ATP consumption from known ion transport rates and pathways and comparing these estimates with measurements on isolated tissues. Further, we performed whole animal respirometry on fish acclimated to 9, 34 and 60 ppt. Results and Discussion: Our theoretical estimates of esophageal and intestinal osmoregulatory costs were in close agreement with direct measurements on isolated tissues and suggest that osmoregulation by these tissues amounts to ~2.5% of SMR. This value agrees well with an earlier attempt to estimate osmoregulation cost from ion transport rates and combined with published measurements of gill osmoregulatory costs suggests that whole animal costs of osmoregulation in marine teleosts is ~7.5% of SMR. As in many previous studies, our whole animal measurements were variable between fish and did not seem suited to determine osmoregulatory costs. While the esophagus showed constant metabolic rate regardless of acclimation salinity, the intestine of fish acclimated to higher salinities showed elevated metabolic rates. The esophagus and the intestine had 2.1 and 3.2-fold higher metabolic rates than corresponding whole animal mass specific rates, respectively. The intestinal tissue displays at least four different Cl- uptake pathways of which the Na+:Cl-:2 K+ (NKCC) pathway accounts for 95% of the Cl- uptake and is the most energy efficient. The remaining pathways are via apical anion exchange and seem to primarily serve luminal alkalinization and the formation of intestinal CaCO3 which is essential for water absorption. [ABSTRACT FROM AUTHOR]
Copyright of Frontiers in Physiology is the property of Frontiers Media S.A. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies