Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Transvenous Defibrillation Leads: Is There an Ideal Position of the Defibrillation Anode?

Tytuł:
Transvenous Defibrillation Leads: Is There an Ideal Position of the Defibrillation Anode?
Autorzy:
Trappe, Hans-Joachim
Pfitzner, Petra
Fain, Eric
Dresler, Cristoph
Fieguth, Hans-Gerd
Temat:
ELECTRONICS in cardiology
DEFIBRILLATORS
PATIENTS
CAPACITORS
PULSE (Heart beat)
CARDIOLOGY
Źródło:
Pacing & Clinical Electrophysiology; Apr1997, Vol. 20 Issue 4, p880-892, 13p
Czasopismo naukowe
A potential benefit of two-lead transvenous defibrillation systems is the ability to independently position the defibrillation electrodes, changing the vector field and possibly decreasing the DFT, Using the new two-lead transvenous TVL lead system, we studied whether DFT is influenced by SVC lead position and whether there is an optimal position. TVL leads and Cadence pulse generators were implanted in 24 patients. No intraoperative or perioperative complications were observed. In each patient, the DFTs were determined for three SVC electrode positions, which were tested in random order: the brachiocephalic vein, the mid-RA. and the RA-SVC junction. The mean DFTs in the three positions were not statistically different, nor was any single lead position consistently associated with lower DFTs. However, an optimal electrode position was identified in 83% of patients, and the DFT from the best lead position for each patient was significantly lower than for any one of the electrode positions (P < 0.01). The mean safety margin for the best SVC lead position was approximately 27 J. These results demonstrate the advantage of a two-lead system, as well as the importance of testing multiple SVC lead positions when the patient's condition permits. Both of these factors can decrease the DFT and maximize the defibrillation safety margin. This will become increasingly important as pulse generator capacitors become smaller (as part of the effort to decrease generator size) and the energy output of the generators consequently decreases. [ABSTRACT FROM AUTHOR]
Copyright of Pacing & Clinical Electrophysiology is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies