Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Isoform- and tissue-specific regulation of the Ca2+ -sensitive transcription factor NFAT in cardiac myocytes and heart failure.

Tytuł:
Isoform- and tissue-specific regulation of the Ca -sensitive transcription factor NFAT in cardiac myocytes and heart failure.
Autorzy:
Rinne, Andreas
Kapur, Nidhi
Molkentin, Jeffery D.
Pogwizd, Steven M.
Bers, Donald M.
Banach, Kathrin
Blatter, Lothar A.
Temat:
T cells
HEART failure risk factors
CALCIUM in the body
TRANSCRIPTION factors
ANIMAL models of arrhythmia
MUSCLE cells
PHYSIOLOGY
Źródło:
American Journal of Physiology: Heart & Circulatory Physiology; Jun2010, Vol. 298 Issue 6, pH2001-H2009, 9p
Czasopismo naukowe
Nuclear factors of activated T cells (NFATs) are Ca2+-sensitive transcription factors that have been implicated in hypertrophy, heart failure (HF), and arrhythmias. Cytosolic NFAT is activated by dephosphorylation by the Ca2+-sensitive phosphatase calcineurin, resulting in translocation to the nucleus, which is opposed by kinase activity, rephosphorylation, and nuclear export. Four different NFAT isoforms are expressed in the heart. The activation and regulation of NFAT in adult cardiac myocytes, which may depend on the NFAT isoform and cell type, are not fully understood. This study compared basal localization, import, and export of NFATc I and NFATc3 in adult atrial and ventricular myocytes to identify isoformand tissue-specific regulatory mechanisms of NFAT activation under physiological conditions and in HF. NFATgreen fluorescent protein fusion proteins and NFAT immunocytochemistry were used to analyze NFAT regulation in adult cat and rabbit myocytes. NFATc1 displayed basal nuclear localization in atrial and ventricular myocytes, an effect that was attenuated by reducing intracellular Ca2+ concentration and inhibiting calcineurin, and enhanced by the inhibition of nuclear export. In contrast, NFATc3 was localized to the cytoplasm but could be driven to the nucleus by angiotensin II and endothelin-l stimulation in atrial, but not ventricular, cells. Inhibition of nuclear export (by leptomycin B) facilitated nuclear localization in both cell types. Ventricular myocytes from HF rabbits showed increased basal nuclear localization of endogenous NFATc3 and reduced responsiveness of NFAT translocation to phenylephrine stimulation. In control myocytes, Ca2+ overload, leading to spontaneous Ca2+ waves, induced substantial translocation of NFATc3 to the nucleus. We conclude that the activation of NFAT in adult cardiomyocytes is isoform and tissue specific and is tightly controlled by nuclear export. NFAT is activated in myocytes from HF animals and may be secondary to Ca2+ overload. [ABSTRACT FROM AUTHOR]
Copyright of American Journal of Physiology: Heart & Circulatory Physiology is the property of American Physiological Society and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies