Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Przeglądasz jako GOŚĆ
Tytuł pozycji:

A Neural Network Based Framework for Audio Scene Analysis in Audio Sensor Networks.

Tytuł :
A Neural Network Based Framework for Audio Scene Analysis in Audio Sensor Networks.
Autorzy :
Li, Qi
Ma, Huadong
Zhao, Dong
Pokaż więcej
Źródło :
Advances in Multimedia Information Processing - PCM 2009; 2009, p480-490, 11p
Książka
In recent years, the audio sensor networks have been paid much attention. One of the most important applications of audio sensor networks is audio scene analysis. In this paper, we present a neural network based framework for analyzing the audio scene in the audio sensor networks. In the proposed framework, basic audio events are modeled and detected by Hidden Markov Models (HMMs) in the audio sensor nodes. The cluster head collects the sensory information in its cluster, and then a neural network based approach is proposed to discover the high-level semantic content of the audio context. With the neural network based approach, human knowledge and machine learning are effectively combined together in the semantic inference. That is, the model parameters are learned by statistical learning and then modified manually based on the prior knowledge. We deploy the proposed framework on an audio sensor network and do a series of experiments to evaluate its performance. The experimental results show that our method can work well in the complex real-world situations. [ABSTRACT FROM AUTHOR]
Copyright of Advances in Multimedia Information Processing - PCM 2009 is the property of Springer Nature / Books and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies