Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Przeglądasz jako GOŚĆ
Tytuł pozycji:

Knowledge-based Systems and Interestingness Measures: Analysis with Clinical Datasets.

Tytuł :
Knowledge-based Systems and Interestingness Measures: Analysis with Clinical Datasets.
Autorzy :
Christopher, Jabez J.
Nehemiah, Khanna H.
Arputharaj, Kannan
Pokaż więcej
Temat :
EXPERT systems
DATA mining
DECISION support systems
DIAGNOSIS
FEATURE extraction
PERFORMANCE evaluation
Źródło :
Journal of Computing & Information Technology; 2016, Vol. 24 Issue 1, p65-78, 14p
Czasopismo naukowe
Knowledge mined from clinical data can be used for medical diagnosis and prognosis. By improving the quality of knowledge base, the efficiency of prediction of a knowledge-based system can be enhanced. Designing accurate and precise clinical decision support systems, which use the mined knowledge, is still a broad area of research. This work analyses the variation in classification accuracy for such knowledge-based systems using different rule lists. The purpose of this work is not to improve the prediction accuracy of a decision support system, but analyze the factors that influence the efficiency and design of the knowledge base in a rule-based decision support system. Three benchmark medical datasets are used. Rules are extracted using a supervised machine learning algorithm (PART). Each rule in the ruleset is validated using nine frequently used rule interestingness measures. After calculating the measure values, the rule lists are used for performance evaluation. Experimental results show variation in classification accuracy for different rule lists. Confidence and Laplace measures yield relatively superior accuracy: 81.188% for heart disease dataset and 78.255% for diabetes dataset. The accuracy of the knowledge-based prediction system is predominantly dependent on the organization of the ruleset. Rule length needs to be considered when deciding the rule ordering. Subset of a rule, or combination of rule elements, may form new rules and sometimes be a member of the rule list. Redundant rules should be eliminated. Prior knowledge about the domain will enable knowledge engineers to design a better knowledge base. [ABSTRACT FROM AUTHOR]
Copyright of Journal of Computing & Information Technology is the property of CIT. Journal of Computing & Information Technology and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies