Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Forming-free flexible memristor with multilevel storage for neuromorphic computing by full PVD technique.

Tytuł:
Forming-free flexible memristor with multilevel storage for neuromorphic computing by full PVD technique.
Autorzy:
Wang, Tian-Yu
Meng, Jia-Lin
Li, Qing-Xuan
Chen, Lin
Zhu, Hao
Sun, Qing-Qing
Ding, Shi-Jin
Zhang, David Wei
Temat:
ARTIFICIAL neural networks
NONVOLATILE random-access memory
PHYSICAL vapor deposition
FLEXIBLE electronics
CONSUMPTION (Economics)
RANDOM access memory
Źródło:
Journal of Materials Science & Technology; Jan2021, Vol. 60, p21-26, 6p
Periodyk
Flexible resistive random access memory (RRAM) has shown great potential in wearable electronics. With tunable multilevel resistance states, flexible memristors could be used to mimic the bio-synapses for constructing high-efficient wearable neuromorphic computing system. However, the flexible substrate has intrinsic disadvantages including low-temperature tolerance and poor complementary metal-oxide-semiconductor (CMOS) compatibility, which limit the development of flexible electronics. The physical vapor deposition (PVD) fabrication process could prepare RRAM without requirement of further treatment, which greatly simplified preparation steps and reduced the production costs. On the other hand, forming process, as a common pre-programing operation in RRAM, increases the energy consumption and limits the application scenarios of RRAM. Here, a NiO-based forming-free RRAM with low set voltage was fabricated via full PVD technique. The flexible device exhibited reliable resistive switching characteristics under flat state even compressive and tensile states (R = 10 mm). The tunable multilevel resistance states (5 levels) could be obtained by controlling the compliance current. Besides, synaptic plasticities also were verified in this device. The flexible NiO-based RRAM shows great potential in wearable forming-free multibit memory and neuromorphic computing electronics. [ABSTRACT FROM AUTHOR]
Copyright of Journal of Materials Science & Technology is the property of Elsevier B.V. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies