Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Przeglądasz jako GOŚĆ
Tytuł pozycji:

RICE CROP MAPPING USING SENTINEL-1 TIME SERIES IMAGES (CASE STUDY: MAZANDARAN, IRAN)

Tytuł :
RICE CROP MAPPING USING SENTINEL-1 TIME SERIES IMAGES (CASE STUDY: MAZANDARAN, IRAN)
Autorzy :
Saadat, M.
Hasanlou, M.
Homayouni, S.
Pokaż więcej
Temat :
TA1-2040
TA1501-1820
Applied optics. Photonics
Engineering (General). Civil engineering (General)
Technology
Źródło :
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol XLII-4-W18, Pp 897-904 (2019)
Wydawca :
Copernicus Publications, 2019.
Rok publikacji :
2019
Kolekcja :
DOAJ-Articles_enriched
DOAJ-Articles
Opis pliku :
application/pdf
Język :
English
ISSN :
2194-9034
1682-1750
DOI :
10.5194/isprs-archives-XLII-4-W18-897-2019
Numer akcesji :
edsair.dedup.wf.001..121160926ed874c31f9f8a50653ea61b
Policymaking and planning agricultural improvement require accurate and timely information and statistics. In Iran, collecting and acquiring agricultural statistics is often done in the traditional methods. Related studies have proved that these methods mostly contain some mistakes. Multi-temporal acquisition strategies of remotely sensed data provide an opportunity to improve rice monitoring and mapping. Studying and monitoring rice paddies in vast areas is limited by the presence of cloud cover, the spatial and temporal resolution of optical sensors, and the lack of open access or systematic Radar data. Sentinel-1 satellite data, which are free to access and has a high quality of spatial and temporal resolution, can provide a great opportunity for monitoring crop products, especially rice. In this study, Sigma Nought, Gamma Nought and Beta Nought time series of Sentinel-1 data in VV, VH and VV+VH polarizations were employed for extracting areas under rice cultivation in the region of Mazandaran province, Iran. These satellite data are taken regularly every 12 days, according to the season of the region, from March 21st to September 22nd of 2018. In this study, in order to specify the rice paddies area, several fieldworks were randomly carried out for two weeks, and field data were collected as well. Field data including rice paddies areas and non-rice areas were collected as ‘Test and Train data set’ and then the Random Forrest (RF) algorithm was carried out to determine the rice paddies area. The classification result was validated using test samples. The accuracy of all classifications results are over 80% and the best result is related to Sigma Nought and gamma Nought of VH polarization, with an accuracy of 91.37%. The results showed a high capability to evaluate and monitor rice production at moderate levels in a vast area which is regularly exposed to the cloud cover.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies