Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Przeglądasz jako GOŚĆ
Tytuł pozycji:

Inferential measurement of the dresser width for the grinding process automation

Tytuł :
Inferential measurement of the dresser width for the grinding process automation
Autorzy :
Ferreira, Fabio Isaac [UNESP]
de Aguiar, Paulo Roberto [UNESP]
Lopes, Wenderson Nascimento [UNESP]
Martins, Cesar Henrique Rossinoli
Ruzzi, Rodrigo de Souza
Bianchi, Eduardo Carlos [UNESP]
D’Addona, Doriana Marilena
Pokaż więcej
Temat :
Acoustic emission
Artificial neural networks
Dressing operation
Inferential measurement
Tool wear condition
Źródło :
Repositório Institucional da UNESP
Universidade Estadual Paulista
Rok publikacji :
2019
Język :
English
DOI :
10.1007/s00170-018-2869-x
Numer akcesji :
edsair.od......3056..069ed98e4f001c1b91a9f8b3d35d2233
Made available in DSpace on 2019-10-06T16:02:21Z (GMT). No. of bitstreams: 0 Previous issue date: 2019-02-25 Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Dressing is an essential process for the machining industries. The grinding community keeps the slogan “grinding is dressing,” given the importance of this reconditioning process. This paper presents a methodology for forecasting the dresser width one step forward by using indirect monitoring. The dresser width is an important parameter to guarantee the quality of the dressing process and, in many cases, it is monitored directly by the operators. Acoustic emission signals were collected during the dressing process and an estimation neural network was used to correlate the dresser width with the processed signals to estimate the current value of the width. The output of the estimation network was input to a time-delay neural network to predict the next value of the dresser width. By utilizing this procedure, an automatic system would be able to readjust the dressing parameters while avoiding the stops, reducing costs, and maintaining repeatability during the process. Department of Electrical Engineering Faculty of Engineering Bauru (FEB) Universidade Estadual Paulista (UNESP), Av. Eng. Luiz Edmundo C. Coube 14-01 Department of Electrical and Computational Engineering São Paulo University (USP) School of Mechanical Engineering Federal University of Uberlândia (UFU) Department of Mechanical Engineering Faculty of Engineering Bauru (FEB) Universidade Estadual Paulista (UNESP) Department of Chemical Materials and Production Engineering Napoli Federico II University (UNINA) Department of Electrical Engineering Faculty of Engineering Bauru (FEB) Universidade Estadual Paulista (UNESP), Av. Eng. Luiz Edmundo C. Coube 14-01 Department of Mechanical Engineering Faculty of Engineering Bauru (FEB) Universidade Estadual Paulista (UNESP)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies