Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Przeglądasz jako GOŚĆ
Tytuł pozycji:

Simulating preferential soil water flow and tracer transport using the Lagrangian Soil Water and Solute Transport Model

Tytuł :
Simulating preferential soil water flow and tracer transport using the Lagrangian Soil Water and Solute Transport Model
Autorzy :
A. Sternagel
R. Loritz
W. Wilcke
E. Zehe
Pokaż więcej
Temat :
Environmental technology. Sanitary engineering
Geography. Anthropology. Recreation
Environmental sciences
Źródło :
Hydrology and Earth System Sciences, Vol 23, Pp 4249-4267 (2019)
Wydawca :
Copernicus Publications, 2019.
Rok publikacji :
Kolekcja :
LCC:Environmental technology. Sanitary engineering
LCC:Geography. Anthropology. Recreation
LCC:Environmental sciences
Typ dokumentu :
Opis pliku :
electronic resource
Język :
Relacje :;;
Dostęp URL :
Numer akcesji :
Czasopismo naukowe
We propose an alternative model concept to represent rainfall-driven soil water dynamics and especially preferential water flow and solute transport in the vadose zone. Our LAST-Model (Lagrangian Soil Water and Solute Transport) is based on a Lagrangian perspective of the movement of water particles (Zehe and Jackisch, 2016) carrying a solute mass through the subsurface which is separated into a soil matrix domain and a preferential flow domain. The preferential flow domain relies on observable field data like the average number of macropores of a given diameter, their hydraulic properties and their vertical length distribution. These data may be derived either from field observations or by inverse modelling using tracer data. Parameterization of the soil matrix domain requires soil hydraulic functions which determine the parameters of the water particle movement and particularly the distribution of flow velocities in different pore sizes. Infiltration into the matrix and the macropores depends on their respective moisture state, and subsequently macropores are gradually filled. Macropores and matrix interact through diffusive mixing of water and solutes between the two flow domains, which again depends on their water content and matric potential at the considered depths. The LAST-Model is evaluated using tracer profiles and macropore data obtained at four different study sites in the Weiherbach catchment in southern Germany and additionally compared against simulations using HYDRUS 1-D as a benchmark model. While both models show qual performance at two matrix-flow-dominated sites, simulations with LAST are in better accordance with the fingerprints of preferential flow at the two other sites compared to HYDRUS 1-D. These findings generally corroborate the feasibility of the model concept and particularly the implemented representation of macropore flow and macropore–matrix exchange. We thus conclude that the LAST-Model approach provides a useful and alternative framework for (a) simulating rainfall-driven soil water and solute dynamics and fingerprints of preferential flow as well as (b) linking model approaches and field experiments. We also suggest that the Lagrangian perspective offers promising opportunities to quantify water ages and to evaluate travel and residence times of water and solutes by a simple age tagging of particles entering and leaving the model domain.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies