Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

PredTAD: A machine learning framework that models 3D chromatin organization alterations leading to oncogene dysregulation in breast cancer cell lines

Tytuł:
PredTAD: A machine learning framework that models 3D chromatin organization alterations leading to oncogene dysregulation in breast cancer cell lines
Autorzy:
Jacqueline Chyr
Zhigang Zhang
Xi Chen
Xiaobo Zhou
Temat:
Chromatin organization
Topologically associated domains
TAD boundaries
Machine learning
Computational biology
Breast cancer
Biotechnology
TP248.13-248.65
Źródło:
Computational and Structural Biotechnology Journal, Vol 19, Iss , Pp 2870-2880 (2021)
Wydawca:
Elsevier, 2021.
Rok publikacji:
2021
Kolekcja:
LCC:Biotechnology
Typ dokumentu:
article
Opis pliku:
electronic resource
Język:
English
ISSN:
2001-0370
Relacje:
http://www.sciencedirect.com/science/article/pii/S200103702100194X; https://doaj.org/toc/2001-0370
DOI:
10.1016/j.csbj.2021.05.013
Dostęp URL:
https://doaj.org/article/281cfc6f5f664e88a4bf4cac6f5405e0  Link otwiera się w nowym oknie
Numer akcesji:
edsdoj.281cfc6f5f664e88a4bf4cac6f5405e0
Czasopismo naukowe
Topologically associating domains, or TADs, play important roles in genome organization and gene regulation; however, they are often altered in diseases. High-throughput chromatin conformation capturing assays, such as Hi-C, can capture domains of increased interactions, and TADs and boundaries can be identified using well-established analytical tools. However, generating Hi-C data is expensive. In our study, we addressed the relationship between multi-omics data and higher-order chromatin structures using a newly developed machine-learning model called PredTAD. Our tool uses already-available and cost-effective datatypes such as transcription factor and histone modification ChIPseq data. Specifically, PredTAD utilizes both epigenetic and genetic features as well as neighboring information to classify the entire human genome as boundary or non-boundary regions. Our tool can predict boundary changes between normal and breast cancer genomes. Among the most important features for predicting boundary alterations were CTCF, subunits of cohesin (RAD21 and SMC3), and chromosome number, suggesting their roles in conserved and dynamic boundaries formation. Upon further analysis, we observed that genes near altered TAD boundaries were found to be involved in several important breast cancer signaling pathways such as Ras, Jak-STAT, and estrogen signaling pathways. We also discovered a TAD boundary alteration that contributes to RET oncogene overexpression. PredTAD can also successfully predict TAD boundary changes in other conditions and diseases. In conclusion, our newly developed machine learning tool allowed for a more complete understanding of the dynamic 3D chromatin structures involved in signaling pathway activation, altered gene expression, and disease state in breast cancer cells.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies