Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Engineering agatoxin, a cystine-knot peptide from spider venom, as a molecular probe for in vivo tumor imaging.

Tytuł:
Engineering agatoxin, a cystine-knot peptide from spider venom, as a molecular probe for in vivo tumor imaging.
Autorzy:
Sarah J Moore
Cheuk Lun Leung
Heidi K Norton
Jennifer R Cochran
Temat:
Medicine
Science
Źródło:
PLoS ONE, Vol 8, Iss 4, p e60498 (2013)
Wydawca:
Public Library of Science (PLoS), 2013.
Rok publikacji:
2013
Kolekcja:
LCC:Medicine
LCC:Science
Typ dokumentu:
article
Opis pliku:
electronic resource
Język:
English
ISSN:
1932-6203
Relacje:
https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/23573262/?tool=EBI; https://doaj.org/toc/1932-6203
DOI:
10.1371/journal.pone.0060498
Dostęp URL:
https://doaj.org/article/ca2be32f20cc460f80181c6f688ba77b  Link otwiera się w nowym oknie
Numer akcesji:
edsdoj.2be32f20cc460f80181c6f688ba77b
Czasopismo naukowe
BackgroundCystine-knot miniproteins, also known as knottins, have shown great potential as molecular scaffolds for the development of targeted therapeutics and diagnostic agents. For this purpose, previous protein engineering efforts have focused on knottins based on the Ecballium elaterium trypsin inhibitor (EETI) from squash seeds, the Agouti-related protein (AgRP) neuropeptide from mammals, or the Kalata B1 uterotonic peptide from plants. Here, we demonstrate that Agatoxin (AgTx), an ion channel inhibitor found in spider venom, can be used as a molecular scaffold to engineer knottins that bind with high-affinity to a tumor-associated integrin receptor.Methodology/principal findingsWe used a rational loop-grafting approach to engineer AgTx variants that bound to αvβ3 integrin with affinities in the low nM range. We showed that a disulfide-constrained loop from AgRP, a structurally-related knottin, can be substituted into AgTx to confer its high affinity binding properties. In parallel, we identified amino acid mutations required for efficient in vitro folding of engineered integrin-binding AgTx variants. Molecular imaging was used to evaluate in vivo tumor targeting and biodistribution of an engineered AgTx knottin compared to integrin-binding knottins based on AgRP and EETI. Knottin peptides were chemically synthesized and conjugated to a near-infrared fluorescent dye. Integrin-binding AgTx, AgRP, and EETI knottins all generated high tumor imaging contrast in U87MG glioblastoma xenograft models. Interestingly, EETI-based knottins generated significantly lower non-specific kidney imaging signals compared to AgTx and AgRP-based knottins.Conclusions/significanceIn this study, we demonstrate that AgTx, a knottin from spider venom, can be engineered to bind with high affinity to a tumor-associated receptor target. This work validates AgTx as a viable molecular scaffold for protein engineering, and further demonstrates the promise of using tumor-targeting knottins as probes for in vivo molecular imaging.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies