Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Estimation of SARS-CoV-2 mortality during the early stages of an epidemic: A modeling study in Hubei, China, and six regions in Europe.

Tytuł:
Estimation of SARS-CoV-2 mortality during the early stages of an epidemic: A modeling study in Hubei, China, and six regions in Europe.
Autorzy:
Anthony Hauser
Michel J Counotte
Charles C Margossian
Garyfallos Konstantinoudis
Nicola Low
Christian L Althaus
Julien Riou
Temat:
Medicine
Źródło:
PLoS Medicine, Vol 17, Iss 7, p e1003189 (2020)
Wydawca:
Public Library of Science (PLoS), 2020.
Rok publikacji:
2020
Kolekcja:
LCC:Medicine
Typ dokumentu:
article
Opis pliku:
electronic resource
Język:
English
ISSN:
1549-1277
1549-1676
Relacje:
https://doaj.org/toc/1549-1277; https://doaj.org/toc/1549-1676
DOI:
10.1371/journal.pmed.1003189
Dostęp URL:
https://doaj.org/article/a3f3907166c64b31bf91c4a0bc03c091  Link otwiera się w nowym oknie
Numer akcesji:
edsdoj.3f3907166c64b31bf91c4a0bc03c091
Czasopismo naukowe
BackgroundAs of 16 May 2020, more than 4.5 million cases and more than 300,000 deaths from disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been reported. Reliable estimates of mortality from SARS-CoV-2 infection are essential for understanding clinical prognosis, planning healthcare capacity, and epidemic forecasting. The case-fatality ratio (CFR), calculated from total numbers of reported cases and reported deaths, is the most commonly reported metric, but it can be a misleading measure of overall mortality. The objectives of this study were to (1) simulate the transmission dynamics of SARS-CoV-2 using publicly available surveillance data and (2) infer estimates of SARS-CoV-2 mortality adjusted for biases and examine the CFR, the symptomatic case-fatality ratio (sCFR), and the infection-fatality ratio (IFR) in different geographic locations.Method and findingsWe developed an age-stratified susceptible-exposed-infected-removed (SEIR) compartmental model describing the dynamics of transmission and mortality during the SARS-CoV-2 epidemic. Our model accounts for two biases: preferential ascertainment of severe cases and right-censoring of mortality. We fitted the transmission model to surveillance data from Hubei Province, China, and applied the same model to six regions in Europe: Austria, Bavaria (Germany), Baden-Württemberg (Germany), Lombardy (Italy), Spain, and Switzerland. In Hubei, the baseline estimates were as follows: CFR 2.4% (95% credible interval [CrI] 2.1%-2.8%), sCFR 3.7% (3.2%-4.2%), and IFR 2.9% (2.4%-3.5%). Estimated measures of mortality changed over time. Across the six locations in Europe, estimates of CFR varied widely. Estimates of sCFR and IFR, adjusted for bias, were more similar to each other but still showed some degree of heterogeneity. Estimates of IFR ranged from 0.5% (95% CrI 0.4%-0.6%) in Switzerland to 1.4% (1.1%-1.6%) in Lombardy, Italy. In all locations, mortality increased with age. Among individuals 80 years or older, estimates of the IFR suggest that the proportion of all those infected with SARS-CoV-2 who will die ranges from 20% (95% CrI 16%-26%) in Switzerland to 34% (95% CrI 28%-40%) in Spain. A limitation of the model is that count data by date of onset are required, and these are not available in all countries.ConclusionsWe propose a comprehensive solution to the estimation of SARS-Cov-2 mortality from surveillance data during outbreaks. The CFR is not a good predictor of overall mortality from SARS-CoV-2 and should not be used for evaluation of policy or comparison across settings. Geographic differences in IFR suggest that a single IFR should not be applied to all settings to estimate the total size of the SARS-CoV-2 epidemic in different countries. The sCFR and IFR, adjusted for right-censoring and preferential ascertainment of severe cases, are measures that can be used to improve and monitor clinical and public health strategies to reduce the deaths from SARS-CoV-2 infection.
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies