Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Przeglądasz jako GOŚĆ
Tytuł pozycji:

Incorporation of Satellite Data and Uncertainty in a Nationwide Groundwater Recharge Model in New Zealand

Tytuł :
Incorporation of Satellite Data and Uncertainty in a Nationwide Groundwater Recharge Model in New Zealand
Autorzy :
Rogier Westerhoff
Paul White
Zara Rawlinson
Pokaż więcej
Temat :
groundwater
recharge
uncertainty
satellite
large-scale
nationwide
evapotranspiration
vegetation
model
Science
Źródło :
Remote Sensing, Vol 10, Iss 1, p 58 (2018)
Wydawca :
MDPI AG, 2018.
Rok publikacji :
2018
Kolekcja :
LCC:Science
Typ dokumentu :
article
Opis pliku :
electronic resource
Język :
English
ISSN :
2072-4292
Relacje :
http://www.mdpi.com/2072-4292/10/1/58; https://doaj.org/toc/2072-4292
DOI :
10.3390/rs10010058
Dostęp URL :
https://doaj.org/article/4aa96968385644f286e72a974da5ab1a
Prawa :
Journal Licence: CC BY
Numer akcesji :
edsdoj.4aa96968385644f286e72a974da5ab1a
Czasopismo naukowe
A nationwide model of groundwater recharge for New Zealand (NGRM), as described in this paper, demonstrated the benefits of satellite data and global models to improve the spatial definition of recharge and the estimation of recharge uncertainty. NGRM was inspired by the global-scale WaterGAP model but with the key development of rainfall recharge calculation on scales relevant to national- and catchment-scale studies (i.e., a 1 km × 1 km cell size and a monthly timestep in the period 2000–2014) provided by satellite data (i.e., MODIS-derived evapotranspiration, AET and vegetation) in combination with national datasets of rainfall, elevation, soil and geology. The resulting nationwide model calculates groundwater recharge estimates, including their uncertainty, consistent across the country, which makes the model unique compared to all other New Zealand estimates targeted towards groundwater recharge. At the national scale, NGRM estimated an average recharge of 2500 m 3 /s, or 298 mm/year, with a model uncertainty of 17%. Those results were similar to the WaterGAP model, but the improved input data resulted in better spatial characteristics of recharge estimates. Multiple uncertainty analyses led to these main conclusions: the NGRM model could give valuable initial estimates in data-sparse areas, since it compared well to most ground-observed lysimeter data and local recharge models; and the nationwide input data of rainfall and geology caused the largest uncertainty in the model equation, which revealed that the satellite data could improve spatial characteristics without significantly increasing the uncertainty. Clearly the increasing volume and availability of large-scale satellite data is creating more opportunities for the application of national-scale models at the catchment, and smaller, scales. This should result in improved utility of these models including provision of initial estimates in data-sparse areas. Topics for future collaborative research associated with the NGRM model include: improvement of rainfall-runoff models, establishment of snowmelt and river recharge modules, further improvement of estimates of rainfall and AET, and satellite-derived AET in irrigated areas. Importantly, the quantification of uncertainty, which should be associated with all future models, should give further impetus to field measurements of rainfall recharge for the purpose of model calibration.
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies