Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Evaluation of 3D printed microfluidic networks to study fluid flow in rocks

Tytuł:
Evaluation of 3D printed microfluidic networks to study fluid flow in rocks
Autorzy:
Mousavi Seyed Mahdi
Sadeghnejad Saeid
Ostadhassan Mehdi
Temat:
Chemical technology
TP1-1185
Energy industries. Energy policy. Fuel trade
HD9502-9502.5
Źródło:
Oil & Gas Science and Technology, Vol 76, p 50 (2021)
Wydawca:
EDP Sciences, 2021.
Rok publikacji:
2021
Kolekcja:
LCC:Chemical technology
Typ dokumentu:
article
Opis pliku:
electronic resource
Język:
English
French
ISSN:
1294-4475
1953-8189
Relacje:
https://ogst.ifpenergiesnouvelles.fr/articles/ogst/full_html/2021/01/ogst200368/ogst200368.html; https://doaj.org/toc/1294-4475; https://doaj.org/toc/1953-8189
DOI:
10.2516/ogst/2021029
Dostęp URL:
https://doaj.org/article/e8d1355701e545cea89b086cd4f5fa40  Link otwiera się w nowym oknie
Numer akcesji:
edsdoj.8d1355701e545cea89b086cd4f5fa40
Czasopismo naukowe
Visualizing fluid flow in porous media can provide a better understanding of transport phenomena at the pore scale. In this regard, transparent micromodels are suitable tools to investigate fluid flow in porous media. However, using glass as the primary material makes them inappropriate for predicting the natural behavior of rocks. Moreover, constructing these micromodels is time-consuming via conventional methods. Thus, an alternative approach can be to employ 3D printing technology to fabricate representative porous media. This study investigates fluid flow processes through a transparent microfluidic device based on a complex porous geometry (natural rock) using digital-light processing printing technology. Unlike previous studies, this one has focused on manufacturing repeatability. This micromodel, like a custom-built transparent cell, is capable of modeling single and multiphase transport phenomena. First, the tomographic data of a carbonate rock sample is segmented and 3D printed by a digital-light processing printer. Two miscible and immiscible tracer injection experiments are performed on the printed microfluidic media, while the experiments are verified with the same boundary conditions using a CFD simulator. The comparison of the results is based on Structural Similarity Index Measure (SSIM), where in both miscible and immiscible experiments, more than 80% SSIM is achieved. This confirms the reliability of printing methodology for manufacturing reusable microfluidic models as a promising and reliable tool for visual investigation of fluid flow in porous media. Ultimately, this study presents a novel comprehensive framework for manufacturing 2.5D realistic microfluidic devices (micromodels) from pore-scale rock images that are validated through CFD simulations.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies