Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Refining an ensemble of volcanic ash forecasts using satellite retrievals: Raikoke 2019

Tytuł:
Refining an ensemble of volcanic ash forecasts using satellite retrievals: Raikoke 2019
Autorzy:
A. Capponi
N. J. Harvey
H. F. Dacre
K. Beven
C. Saint
C. Wells
M. R. James
Temat:
Physics
QC1-999
Chemistry
QD1-999
Źródło:
Atmospheric Chemistry and Physics, Vol 22, Pp 6115-6134 (2022)
Wydawca:
Copernicus Publications, 2022.
Rok publikacji:
2022
Kolekcja:
LCC:Physics
LCC:Chemistry
Typ dokumentu:
article
Opis pliku:
electronic resource
Język:
English
ISSN:
1680-7316
1680-7324
Relacje:
https://acp.copernicus.org/articles/22/6115/2022/acp-22-6115-2022.pdf; https://doaj.org/toc/1680-7316; https://doaj.org/toc/1680-7324
DOI:
10.5194/acp-22-6115-2022
Dostęp URL:
https://doaj.org/article/fde877bb864748eba89dd1b6a5454ab4  Link otwiera się w nowym oknie
Numer akcesji:
edsdoj.fde877bb864748eba89dd1b6a5454ab4
Czasopismo naukowe
Volcanic ash advisories are produced by specialised forecasters who combine several sources of observational data and volcanic ash dispersion model outputs based on their subjective expertise. These advisories are used by the aviation industry to make decisions about where it is safe to fly. However, both observations and dispersion model simulations are subject to various sources of uncertainties that are not represented in operational forecasts. Quantification and communication of these uncertainties are fundamental for making more informed decisions. Here, we develop a data assimilation method that combines satellite retrievals and volcanic ash transport and dispersion model (VATDM) output, considering uncertainties in both data sources. The methodology is applied to a case study of the 2019 Raikoke eruption. To represent uncertainty in the VATDM output, 1000 simulations are performed by simultaneously perturbing the eruption source parameters, meteorology, and internal model parameters (known as the prior ensemble). The ensemble members are filtered, based on their level of agreement with the ash column loading, and their uncertainty, of the Himawari–8 satellite retrievals, to produce a constrained posterior ensemble. For the Raikoke eruption, filtering the ensemble skews the values of mass eruption rate towards the lower values within the wider parameters ranges initially used in the prior ensemble (mean reduces from 1 to 0.1 Tg h−1). Furthermore, including satellite observations from subsequent times increasingly constrains the posterior ensemble. These results suggest that the prior ensemble leads to an overestimate of both the magnitude and uncertainty in ash column loadings. Based on the prior ensemble, flight operations would have been severely disrupted over the Pacific Ocean. Using the constrained posterior ensemble, the regions where the risk is overestimated are reduced, potentially resulting in fewer flight disruptions. The data assimilation methodology developed in this paper is easily generalisable to other short duration eruptions and to other VATDMs and retrievals of ash from other satellites.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies