Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Przeglądasz jako GOŚĆ
Tytuł pozycji:

Exploring Students' Thinking Process in Mathematical Proof of Abstract Algebra Based on Mason's Framework

Tytuł :
Exploring Students' Thinking Process in Mathematical Proof of Abstract Algebra Based on Mason's Framework
Autorzy :
Faizah, Siti (ORCID 0000-0002-7025-591X) ; Nusantara, Toto (ORCID 0000-0003-1116-9023) ; Sudirman, Sudirman (ORCID 0000-0003-3548-3367) ; Rahardi, Rustanto (ORCID 0000-0001-8974-840X)
Źródło :
Online Submission, Journal for the Education of Gifted Young Scientists v8 n2 p871-884 Jun 2020. 14 pp.
Dostępność :
Full Text from ERIC Available online: https://eric.ed.gov/contentdelivery/servlet/ERICServlet?accno=ED606156">https://eric.ed.gov/contentdelivery/servlet/ERICServlet?accno=ED606156
Recenzowane naukowo :
N/A
Data publikacji :
2020
ISSN :
2149-360X
Deskryptory :
Mathematical Logic, Validity, Algebra, Cognitive Processes, Mathematics Instruction, Foreign Countries, College Students, College Mathematics, Intuition
Abstractor :
As Provided
Liczba referencji :
-1
Język :
English
Liczba stron :
14
Education Level :
Higher Education; Postsecondary Education
Typ publikacji :
Journal Articles; Reports - Research
Kod czasopisma :
OCT2020
Data wpisu :
2020
Numer akcesji :
ED606156
Czasopismo naukowe
Mathematical proof is a logically formed argument based on students' thinking process. A mathematical proof is a formal process which needs the ability of analytical thinking to solve. However, researchers still find students who complete the mathematical proof process through intuitive thinking. Students who have studied mathematical proof in the early semester should not have completed abstract algebraic proof intuitively. Therefore, the aim of this research is to explore students' thinking process in conducting mathematical proof based on Mason's framework. The instrument used to collect data was mathematical proof problems test related to abstract algebra and interviews. There are three out of 25 students who did abstract algebra through intuitive thinking as they only used two stages of the Mason's thinking framework. Then, two out of three students were chosen as the subjects of the study. The selection of research subjects is based on the student's ability to express intuitive thinking verbally process which were conducted while completing the test. It is found that students can form structural-intuitive warrant that they use to complete the mathematical proof of abstract algebra. Structural-intuitive warrant formed by students at the stage of attack and review are in the form of: institutional warrant and evaluative warrant, while at the entry and attack stage are a priori warrant and empirical warrant.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies