Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Przeglądasz jako GOŚĆ

Wyszukujesz frazę ""Fukuda, Motoki"" wg kryterium: Autor


Tytuł :
Utilization of computer-aided detection system in diagnosing unilateral maxillary sinusitis on panoramic radiographs.
Autorzy :
Ohashi Y; 1 Department of Oral and Maxillofacial Radiology, Aichi-Gakuin University School of Dentistry, Nagoya, Japan.
Ariji Y; 1 Department of Oral and Maxillofacial Radiology, Aichi-Gakuin University School of Dentistry, Nagoya, Japan.
Katsumata A; 2 Department of Oral Radiology, Asahi University School of Dentistry, Mizuho, Japan.
Fujita H; 3 Department of Intelligent Image Information, Graduate School of Medicine, Gifu University, Gifu, Japan.
Nakayama M; 1 Department of Oral and Maxillofacial Radiology, Aichi-Gakuin University School of Dentistry, Nagoya, Japan.
Fukuda M; 1 Department of Oral and Maxillofacial Radiology, Aichi-Gakuin University School of Dentistry, Nagoya, Japan.
Nozawa M; 1 Department of Oral and Maxillofacial Radiology, Aichi-Gakuin University School of Dentistry, Nagoya, Japan.
Ariji E; 1 Department of Oral and Maxillofacial Radiology, Aichi-Gakuin University School of Dentistry, Nagoya, Japan.
Pokaż więcej
Źródło :
Dento maxillo facial radiology [Dentomaxillofac Radiol] 2016; Vol. 45 (3), pp. 20150419. Date of Electronic Publication: 2016 Feb 03.
Typ publikacji :
Comparative Study; Journal Article; Research Support, Non-U.S. Gov't
MeSH Terms :
Maxillary Sinusitis/*diagnostic imaging
Radiographic Image Interpretation, Computer-Assisted/*statistics & numerical data
Radiography, Panoramic/*statistics & numerical data
Adult ; Area Under Curve ; Case-Control Studies ; Clinical Competence/statistics & numerical data ; Female ; Humans ; Male ; Maxillary Sinus/diagnostic imaging ; Middle Aged ; ROC Curve ; Sensitivity and Specificity
Czasopismo naukowe
Tytuł :
Contrast-enhanced computed tomography image assessment of cervical lymph node metastasis in patients with oral cancer by using a deep learning system of artificial intelligence.
Autorzy :
Ariji Y; Associate Proffessor, Department of Oral and Maxillofacial Radiology, Aichi-Gakuin University School of dentistry, Nagoya, Japan. Electronic address: .
Fukuda M; Instructor, Department of Oral and Maxillofacial Radiology, Aichi-Gakuin University School of dentistry, Nagoya, Japan.
Kise Y; Assistant Professor, Department of Oral and Maxillofacial Radiology, Aichi-Gakuin University School of dentistry, Nagoya, Japan.
Nozawa M; Instructor, Department of Oral and Maxillofacial Radiology, Aichi-Gakuin University School of dentistry, Nagoya, Japan.
Yanashita Y; Postgraduate student, Department of Electrical, Electronic and Computer Faculty of Engineering, Gifu University, Gifu, Japan.
Fujita H; Professor, Department of Electrical, Electronic and Computer Faculty of Engineering, Gifu University, Gifu, Japan.
Katsumata A; Professor, Department of Oral Radiology, Asahi University School of Dentistry, Mizuho, Japan.
Ariji E; Associate Proffessor, Department of Oral and Maxillofacial Radiology, Aichi-Gakuin University School of dentistry, Nagoya, Japan.
Pokaż więcej
Źródło :
Oral surgery, oral medicine, oral pathology and oral radiology [Oral Surg Oral Med Oral Pathol Oral Radiol] 2019 May; Vol. 127 (5), pp. 458-463. Date of Electronic Publication: 2018 Oct 15.
Typ publikacji :
Journal Article
MeSH Terms :
Mouth Neoplasms*
Carcinoma, Squamous Cell ; Contrast Media ; Deep Learning ; Humans ; Lymph Nodes ; Lymphatic Metastasis ; Tomography, X-Ray Computed
Czasopismo naukowe
Tytuł :
Deep-learning classification using convolutional neural network for evaluation of maxillary sinusitis on panoramic radiography.
Autorzy :
Murata M; Department of Oral and Maxillofacial Radiology, Aichi-Gakuin University School of Dentistry, 2-11 Suemori-dori, Chikusa-ku, Nagoya, 464-8651, Japan.
Ariji Y; Department of Oral and Maxillofacial Radiology, Aichi-Gakuin University School of Dentistry, 2-11 Suemori-dori, Chikusa-ku, Nagoya, 464-8651, Japan. .
Ohashi Y; Department of Oral and Maxillofacial Radiology, Aichi-Gakuin University School of Dentistry, 2-11 Suemori-dori, Chikusa-ku, Nagoya, 464-8651, Japan.
Kawai T; Department of Oral and Maxillofacial Radiology, School of Life Dentistry at Tokyo, Nippon Dental University, Tokyo, Japan.
Fukuda M; Department of Oral and Maxillofacial Radiology, Aichi-Gakuin University School of Dentistry, 2-11 Suemori-dori, Chikusa-ku, Nagoya, 464-8651, Japan.
Funakoshi T; Department of Oral and Maxillofacial Radiology, Aichi-Gakuin University School of Dentistry, 2-11 Suemori-dori, Chikusa-ku, Nagoya, 464-8651, Japan.
Kise Y; Department of Oral and Maxillofacial Radiology, Aichi-Gakuin University School of Dentistry, 2-11 Suemori-dori, Chikusa-ku, Nagoya, 464-8651, Japan.
Nozawa M; Department of Oral and Maxillofacial Radiology, Aichi-Gakuin University School of Dentistry, 2-11 Suemori-dori, Chikusa-ku, Nagoya, 464-8651, Japan.
Katsumata A; Department of Oral Radiology, Asahi University School of Dentistry, Mizuho, Japan.
Fujita H; Department of Electrical, Electronic and Computer Faculty of Engineering, Gifu University, Gifu, Japan.
Ariji E; Department of Oral and Maxillofacial Radiology, Aichi-Gakuin University School of Dentistry, 2-11 Suemori-dori, Chikusa-ku, Nagoya, 464-8651, Japan.
Pokaż więcej
Źródło :
Oral radiology [Oral Radiol] 2019 Sep; Vol. 35 (3), pp. 301-307. Date of Electronic Publication: 2018 Dec 11.
Typ publikacji :
Journal Article
MeSH Terms :
Deep Learning*
Maxillary Sinusitis*/diagnostic imaging
Neural Networks, Computer*
Radiography, Panoramic*
Area Under Curve ; Humans
Czasopismo naukowe
Tytuł :
Automatic detection and classification of radiolucent lesions in the mandible on panoramic radiographs using a deep learning object detection technique.
Autorzy :
Ariji Y; Associate Professor, Department of Oral and Maxillofacial Radiology, Aichi-Gakuin University School of Dentistry, Nagoya, Japan. Electronic address: .
Yanashita Y; Postgraduate student, Department of Electrical, Electronic and Computer Faculty of Engineering, Gifu University, Gifu, Japan.
Kutsuna S; Postgraduate student, Department of Electrical, Electronic and Computer Faculty of Engineering, Gifu University, Gifu, Japan.
Muramatsu C; Associate Professor, Department of Electrical, Electronic and Computer Faculty of Engineering, Gifu University, Gifu, Japan; Currently, Faculty of Data Science, Shiga University, Shiga, Japan.
Fukuda M; Associate Professor, Department of Oral and Maxillofacial Radiology, Aichi-Gakuin University School of Dentistry, Nagoya, Japan.
Kise Y; Associate Professor, Department of Oral and Maxillofacial Radiology, Aichi-Gakuin University School of Dentistry, Nagoya, Japan.
Nozawa M; Associate Professor, Department of Oral and Maxillofacial Radiology, Aichi-Gakuin University School of Dentistry, Nagoya, Japan.
Kuwada C; Part-Time lecturer, Department of Oral and Maxillofacial Radiology, Aichi-Gakuin University School of Dentistry, Nagoya, Japan.
Fujita H; Professor, Department of Electrical, Electronic and Computer Faculty of Engineering, Gifu University, Gifu, Japan.
Katsumata A; Professor, Department of Oral Radiology, Asahi University School of Dentistry, Mizuho, Japan.
Ariji E; Professor, Department of Oral and Maxillofacial Radiology, Aichi-Gakuin University School of Dentistry, Nagoya, Japan.
Pokaż więcej
Źródło :
Oral surgery, oral medicine, oral pathology and oral radiology [Oral Surg Oral Med Oral Pathol Oral Radiol] 2019 Oct; Vol. 128 (4), pp. 424-430. Date of Electronic Publication: 2019 Jun 06.
Typ publikacji :
Journal Article
MeSH Terms :
Ameloblastoma*/diagnostic imaging
Deep Learning*
Odontogenic Cysts*/diagnostic imaging
Radiography, Panoramic*
Humans ; Mandible/diagnostic imaging
Czasopismo naukowe
Tytuł :
CT evaluation of extranodal extension of cervical lymph node metastases in patients with oral squamous cell carcinoma using deep learning classification.
Autorzy :
Ariji Y; Department of Oral and Maxillofacial Radiology, Aichi-Gakuin University School of Dentistry, 2-11 Suemori-dori, Chikusa-ku, Nagoya, 464-8651, Japan. .
Sugita Y; Department of Oral Pathology, Aichi-Gakuin University School of Dentistry, Nagoya, Japan.
Nagao T; Department of Maxillofacial Surgery, Aichi-Gakuin University School of Dentistry, Nagoya, Japan.
Nakayama A; Department of Oral and Maxillofacial Surgery, Aichi-Gakuin University School of Dentistry, Nagoya, Japan.
Fukuda M; Department of Oral and Maxillofacial Radiology, Aichi-Gakuin University School of Dentistry, 2-11 Suemori-dori, Chikusa-ku, Nagoya, 464-8651, Japan.
Kise Y; Department of Oral and Maxillofacial Radiology, Aichi-Gakuin University School of Dentistry, 2-11 Suemori-dori, Chikusa-ku, Nagoya, 464-8651, Japan.
Nozawa M; Department of Oral and Maxillofacial Radiology, Aichi-Gakuin University School of Dentistry, 2-11 Suemori-dori, Chikusa-ku, Nagoya, 464-8651, Japan.
Nishiyama M; Department of Oral and Maxillofacial Radiology, Aichi-Gakuin University School of Dentistry, 2-11 Suemori-dori, Chikusa-ku, Nagoya, 464-8651, Japan.
Katumata A; Department of Oral Radiology, Asahi University School of Dentistry, Mizuho, Japan.
Ariji E; Department of Oral and Maxillofacial Radiology, Aichi-Gakuin University School of Dentistry, 2-11 Suemori-dori, Chikusa-ku, Nagoya, 464-8651, Japan.
Pokaż więcej
Źródło :
Oral radiology [Oral Radiol] 2020 Apr; Vol. 36 (2), pp. 148-155. Date of Electronic Publication: 2019 Jun 13.
Typ publikacji :
Journal Article
MeSH Terms :
Carcinoma, Squamous Cell*/diagnostic imaging
Deep Learning*
Mouth Neoplasms*/diagnostic imaging
Extranodal Extension ; Humans ; Lymph Nodes/diagnostic imaging ; Lymphatic Metastasis/diagnostic imaging ; Tomography, X-Ray Computed
Czasopismo naukowe

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies