Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Przeglądasz jako GOŚĆ

Wyszukujesz frazę ""Morphine -- pharmacology"" wg kryterium: Temat


Tytuł :
Brain-computer interface controlled robotic gait orthosis
Autorzy :
Do, An H
Pokaż więcej
Źródło :
Journal of NeuroEngineering and Rehabilitation vol 10, iss 1, 111 1743-0003
Index Terms :
(4-(m-Chlorophenylcarbamoyloxy)-2-butynyl)trimethylammonium Chloride: pharmacology
Animals
Cats
Dimethylphenylpiperazinium Iodide: pharmacology
Electric Stimulation
Enkephalin
Leucine: pharmacology
Methionine: analogs & derivatives
pharmacology
Enkephalins: pharmacology
physiology
Female
Ganglia
Sympathetic: drug effects
Heart Rate: drug effects
Histamine: pharmacology
Male
Morphine: pharmacology
Synaptic Transmission: drug effects
UCI Libraries Open Access Publishing Fund
article
URL :
https://escholarship.org/uc/item/3tc1s456">https://escholarship.org/uc/item/3tc1s456
https://escholarship.org/">https://escholarship.org/
Zasób elektroniczny
Tytuł :
Brain-computer interface controlled robotic gait orthosis
Źródło :
Do, An H; Wang, Po T; King, Christine E; Chun, Sophia N; & Nenadic, Zoran. (2013). Brain-computer interface controlled robotic gait orthosis. Journal of NeuroEngineering and Rehabilitation, 10(1), 111. doi: 10.1186/1743-0003-10-111. UC Irvine: Retrieved from: http://www.escholarship.org/uc/item/3tc1s456
Index Terms :
Life Sciences
Medicine and Health Sciences
(4-(m-Chlorophenylcarbamoyloxy)-2-butynyl)trimethylammonium Chloride: pharmacology
Animals
Cats
Dimethylphenylpiperazinium Iodide: pharmacology
Electric Stimulation
Enkephalin
Leucine: pharmacology
Methionine: analogs & derivatives; pharmacology
Enkephalins: pharmacology; physiology
Female
Ganglia
Sympathetic: drug effects; physiology
Heart Rate: drug effects
Histamine: pharmacology
Male
Morphine: pharmacology
Synaptic Transmission: drug effects
UCI Libraries Open Access Publishing Fund
article
URL :
http://www.escholarship.org/uc/item/3tc1s456">http://www.escholarship.org/uc/item/3tc1s456
Zasób elektroniczny
Tytuł :
Brain-computer interface controlled robotic gait orthosis
Źródło :
Do, An H; Wang, Po T; King, Christine E; Chun, Sophia N; & Nenadic, Zoran. (2013). Brain-computer interface controlled robotic gait orthosis. Journal of NeuroEngineering and Rehabilitation, 10(1), 111. doi: 10.1186/1743-0003-10-111. UC Irvine: Retrieved from: http://www.escholarship.org/uc/item/3tc1s456
Index Terms :
Life Sciences
Medicine and Health Sciences
(4-(m-Chlorophenylcarbamoyloxy)-2-butynyl)trimethylammonium Chloride: pharmacology
Animals
Cats
Dimethylphenylpiperazinium Iodide: pharmacology
Electric Stimulation
Enkephalin
Leucine: pharmacology
Methionine: analogs & derivatives; pharmacology
Enkephalins: pharmacology; physiology
Female
Ganglia
Sympathetic: drug effects; physiology
Heart Rate: drug effects
Histamine: pharmacology
Male
Morphine: pharmacology
Synaptic Transmission: drug effects
UCI Libraries Open Access Publishing Fund
article
URL :
http://www.escholarship.org/uc/item/3tc1s456">http://www.escholarship.org/uc/item/3tc1s456
Zasób elektroniczny
Tytuł :
GPR3 orphan receptor is involved in neuropathic pain after peripheral nerve injury and regulates morphine-induced antinociception.
Index Terms :
Sciences biomédicales
Animals
Male
Mice
Mice, Knockout
Morphine -- pharmacology -- therapeutic use
Neuralgia -- drug therapy -- etiology -- physiopathology
Orphan Nuclear Receptors -- agonists -- physiology
Pain Measurement -- drug effects -- methods
Receptors, G-Protein-Coupled -- agonists -- physiology
Sciatic Neuropathy -- complications -- drug therapy -- physiopathology
Allodynia
Glial cells
GPR3 receptor
Hyperalgesia
Morphine antinociception
Neuropathic pain
Spinal cord
info:eu-repo/semantics/article
info:ulb-repo/semantics/articlePeerReview
info:ulb-repo/semantics/openurl/article
URL :
http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/124782">http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/124782
http://worldcat.org/search?q=on:EQY+http://difusion-oai.ulb.ac.be/oai/request+DCG_ENTIRE_REPOSITORY+CNTCOLL">http://worldcat.org/search?q=on:EQY+http://difusion-oai.ulb.ac.be/oai/request+DCG_ENTIRE_REPOSITORY+CNTCOLL
Zasób elektroniczny
Tytuł :
Modulation of formalin-induced Fos-like immunoreactivity in the spinal cord by swim stress-induced analgesia, morphine and ketamine
Tytuły dodatkowe :
Veränderung der formalinbedingten c-fos-ähnlichen Immunreaktivität im Rückenmark infolge Stress und Behandlung mit Morphin und Ketoamin
Źródło :
GMS German Medical Science
Index Terms :
RATS
ANIMALS
RATS, SPRAGUE-DAWLEY/metabolism
STRESS, PSYCHOLOGICAL
STRESS, PSYCHOLOGICAL/*metabolism
PROTO-ONCOGENE PROTEINS C-FOS
PROTO-ONCOGENE PROTEINS C-FOS/*biosynthesis
PROTO-ONCOGENE PROTEINS C-FOS/*drug effects
FORMALDEHYDE/pharmacology
MORPHINE/pharmacology
KETAMINE/pharmacology
ANALGESIA/psychology
PAIN
PAIN/*metabolism
COMPARATIVE STUDY
RATTUS
TIER
RATTEN, SPRAGUE-DAWLEY-/Stoffwechsel
STREß, PSYCHOLOGISCHER
STREß, PSYCHOLOGISCHER/*Stoffwechsel
PROTO-ONKOGEN-PROTEINE C-FOS
PROTO-ONKOGEN-PROTEINE C-FOS/*Biosynthese
PROTO-ONKOGEN-PROTEINE C-FOS/*Arzneimittelwirkungen
FORMALDEHYD/Pharmakologie
MORPHIN/Pharmakologie
KETAMIN/Pharmakologie
ANALGESIE/Psychologie
SCHMERZEN
SCHMERZEN/*Stoffwechsel
VERGLEICHENDE STUDIE
Fos
stress
pain
formalin
morphine
ketamine
c-fos
Stress
Schmerz
Formalin
Morphin
Ketoamin
ddc:610
article
URL :
http://www.egms.de/en/journals/gms/2008-6/000050.shtml">http://www.egms.de/en/journals/gms/2008-6/000050.shtml
Abbadie C, Taylor BK, Peterson MA, Basbaum AI. Differential contribution of the two phases of the formalin test to the pattern of c-fos expression in the rat spinal cord: studies with remifentanil and lidocaine. Pain. 1997;69(1-2):101-10.
Abbadie C, Besson JM. C-fos expression in rat lumbar spinal cord following peripheral stimulation in adjuvant-induced arthritic and normal rats. Brain Res. 1993;607(1-2):195-204.
Aida S, Yamakura T, Baba H, Taga K, Fukuda S, Shimoji K. Preemptive analgesia by intravenous low-dose ketamine and epidural morphine in gastrectomy: a randomized double-blind study. Anesthesiology. 2000;92(6):1624-30.
Amit Z, Galina ZH. Stress-induced analgesia: adaptive pain suppression. Physiol Rev. 1986;66(4):1091-120.
Annetta MG, Iemma D, Garisto C, Tafani C, Proietti R. Ketamine: new indications for an old drug. Curr Drug Targets. 2005;6(7): 789-94.
Benrath J, Brechtel C, Stark J, Sandkühler J. Low dose of S+-ketamine prevents long-term potentiation in pain pathways under strong opioid analgesia in the rat spinal cord in vivo. Br J Anaesth. 2005;95(4):518-23.
Bontempi B, Sharp FR. Systemic morphine-induced Fos protein in the rat striatum and nucleus accumbens is regulated by mu opioid receptors in the substantia nigra and ventral tegmental area. J Neurosci. 1997;17(21):8596-612.
Bruijnzeel AW, Stam R, Compaan JC, Croiset G, Akkermans LM, Olivier B, Wiegant VM. Long-term sensitization of Fos-responsivity in the rat central nervous system after a single stressful experience. Brain Res. 1999;819(1-2):15-22.
Castro AR, Pinto M, Lima D, Tavares I. Imbalance between the expression of NK1 and GABAB receptors in nociceptive spinal neurons during secondary hyperalgesia: a c-Fos study in the monoarthritic rat. Neuroscience. 2005;132(4):905-16.
Catheline G, Le Guen S, Besson JM. Effects of opioid receptor antagonists on the effects of i.v. morphine on carrageenin evoked c-Fos expression in the superficial dorsal horn of the rat spinal cord. Brain Res. 1999;824(1):105-11.
Chaplan SR, Malmberg AB, Yaksh TL. Efficacy of spinal NMDA receptor antagonism in formalin hyperalgesia and nerve injury evoked allodynia in the rat. J Pharmacol Exp Ther. 1997;280:829-38.
Choe H, Choi YS, Kim YH, Ko SH, Choi HG, Han YJ, Song HS. Epidural morphine plus ketamine for upper abdominal surgery: improved analgesia from preincisional versus postincisional administration. Anesth Analg. 1997;84(3):560-3.
Costa A, Smeraldi A, Tassorelli C, Greco R, Nappi G. Effects of acute and chronic restraint stress on nitroglycerin-induced hyperalgesia in rats. Neurosci Lett. 2005;383(1-2):7-11.
Crane JW, French KR, Buller KM. Patterns of neuronal activation in the rat brain and spinal cord in response to increasing durations of restraint stress. Stress. 2005;8(3):199-211.
Curran T, Teich NM. Identification of a 39,000-dalton protein in cells transformed by the FBJ murine osteosarcoma virus. Virology. 1982;116(1):221-35.
De Bruin JT, Schäfer MK, Krohne HW, Dreyer A. Preoperative anxiety, coping, and intraoperative adjustment: Are there mediating effects of stress-induced analgesia? Psychol Health. 2001;16(3):253-71.
Deutsch SI, Mastropaolo J, Riggs RL, Rosse RB. The antiseizure efficacies of MK-801, phencyclidine, ketamine, and memantine are altered selectively by stress. Pharmacol Biochem Behav. 1997;58(3):709-12.
Dickenson AH, Chapman V, Green GM. The pharmacology of excitatory and inhibitory amino acid-mediated events in the transmission and modulation of pain in the spinal cord. Gen Pharmacol. 1997;28(5):633-8.
Dubuisson D, Dennis SG. The formalin test: a quantitative study of the analgesic effects of morphine, meperidine, and brain stem stimulation in rats and cats. Pain. 1977;4(2):161-74.
de Lange RP, Geerse GJ, Dahlhaus M,van Laar TJ, Wiegant VM, Stam R. Altered brain stem responsivity to duodenal pain after a single stressful experience. Neurosci Lett. 2005;381(1-2):144-8.
Ebersberger A, Anton F, Tolle TR, Zieglgänsberger W. Morphine, 5-HT2 and 5-HT3 receptor antagonists reduce c-fos expression in the trigeminal nuclear complex following noxious chemical stimulation of the rat nasal mucosa. Brain Res. 1995;676(2):336-42.
Frenkel C, Urban BW. Molecular actions of racemic ketamine on human CNS sodium channels. Br J Anaesth. 1992;69(3):292-7.
Fu ES, Miguel R, Scharf JE. Preemptive ketamine decreases postoperative narcotic requirements in patients undergoing abdominal surgery. Anesth Analg. 1997;84(5):1086-90.
Gilron I, Quirion R, Coderre TJ. Pre- versus postformalin effects of ketamine or large-dose alfentanil in the rat: discordance between pain behavior and spinal Fos-like immunoreactivity. Anesth Analg. 1999;89(1):128-35.
Gilron I, Coderre TJ. Novel targets of pain modulation in anaesthesia: preventing painful memories. Can J Anaesth. 1997;44(5 Pt 1):457-62.
Gogas KR, Cho HJ, Botchkina GI, Levine JD, Basbaum AI. Inhibition of noxious stimulus-evoked pain behaviors and neuronal fos-like immunoreactivity in the spinal cord of the rat by supraspinal morphine. Pain. 1996;65(1):9-15.
Grau JW. The central representation of an aversive event maintains the opioid and nonopioid forms of analgesia. Behav Neurosci. 1987;101(2):272-88.
Graven-Nielsen T, Aspegren Kendall S, Henriksson KG, Bengtsson M, Sörensen J, Johnson A, Gerdle B, Arendt-Nielsen L. Ketamine reduces muscle pain, temporal summation, and referred pain in fibromyalgia patients. Pain. 2000;85(3):483-91.
Hao JX, Sjölund BH, Wiesenfeld-Hallin Z. Electrophysiological evidence for an antinociceptive effect of ketamine in the rat spinal cord. Acta Anaesthesiol Scand. 1998;42(4):435-41.
Hao S, Takahata O, Mamiya K, Iwasaki H. Sevoflurane suppresses noxious stimulus-evoked expression of Fos-like immunoreactivity in the rat spinal cord via activation of endogenous opioid systems. Life Sci. 2002;71(5):571-80.
Harris JA. Using c-fos as a neural marker of pain. Brain Res Bull. 1998;45(1):1-8.
Harris JA, Westbrook RF, Duffield TQ, Bentivoglio M. Fos expression in the spinal cord is suppressed in rats displaying conditioned hypoalgesia. Behav Neurosci. 1995;109(2):320-8.
Herbert J. Fortnighly review. Stress, the brain, and mental illness. BMJ. 1997;315(7107):530-5.
Herdegen T, Leah JD. Inducible and constitutive transcription factors in the mammalian nervous system: control of gene expression by Jun, Fos and Krox, and CREB/ATF proteins. Brain Res Brain Res Rev. 1998;28(3):370-490.
Hoffman GE, Lyo D. Anatomical markers of activity in neuroendocrine systems: Are we all 'fos-ed out'? J Neuroendocrinol. 2002;14(4):259-68.
Huang W, Simpson RK Jr. Ketamine suppresses c-fos expression in dorsal horn neurons after acute constrictive sciatic nerve injury in the rat. Neurosci Lett. 1999;269(3):165-8.
Hunt SP, Pini A, Evan G. Induction of c-fos-like protein in spinal cord neurons following sensory stimulation. Nature. 1987;328(6131):632-4.
Jaksch W, Lang S, Reichhalter R, Raab G, Dann K, Fitzal S. Perioperative small-dose S(+)-ketamine has no incremental beneficial effects on postoperative pain when standard-practice opioid infusions are used. Anesth Analg. 2002;94(4):981-6.
Jennings E, Fitzgerald M. C-fos can be induced in the neonatal rat spinal cord by both noxious and innocuous peripheral stimulation. Pain. 1996;68(2-3):301-6.
Ji RR, Rupp F. Phosphorylation of transcription factor CREB in rat spinal cord after formalin-induced hyperalgesia: relationship to c-fos induction. J Neurosci. 1997;17(5):1776-85.
Kamei J, Hitosugi H, Misawa M, Nagase H, Kasuya Y. Delta-Opioid receptor-mediated forced swimming stress-induced antinociception in the formalin test. Psychopharmacology (Berl.). 1993;113(1):15-8.
Kawamata T, Omote K, Sonoda H, Kawamata M, Namiki A. Analgesic mechanisms of ketamine in the presence and absence of peripheral inflammation. Anesthesiology. 2000;93(2): 520-8.
Koizuka S, Obata H, Sasaki M, Saito S, Goto F. Systemic ketamine inhibits hypersensitivity after surgery via descending inhibitory pathways in rats. Can J Anaesth. 2005;52(5):498-505.
Kosek E, Lundberg L. Segmental and plurisegmental modulation of pressure pain thresholds during static muscle contractions in healthy individuals. Eur J Pain. 2003;7(3):251-8.
Kovelowski CJ, Raffa RB, Porreca F. Tramadol and its enantiomers differentially suppress c-fos-like immunoreactivity in rat brain and spinal cord following acute noxious stimulus. Eur J Pain. 1998;2(3):211-9.
Kucuk N, Kizilkaya M, Tokdemir M. Preoperative epidural ketamine does not have a postoperative opioid sparing effect. Anesth Analg. 1998;87(1):103-6.
Labuz D, Chocyk A, Wedzony K, Toth G, Przewlocka B. Endomorphin-2, deltorphin II and their analogs suppress formalin-induced nociception and c-Fos expression in the rat spinal cord. Life Sci. 2003;73(4):403-12.
Lee IO, Lee IH, Lee KC. Pre-versus post-formalin effects of intrathecal ketamine on spinal Fos-like immunoreactivity in rats. Indian J Med Res. 2004;120(6):527-33.
Lee IO, Lee IH. Systemic, but not Intrathecal, Ketamine Produces Preemptive Analgesia in the Rat Formalin Model. Acta Anaesthesiol Sin. 2001;39(3):123-7.
Liu RJ, Qiang M, Qiao JT. Nociceptive c-fos expression in supraspinal areas in avoidance of descending suppression at the spinal relay station. Neuroscience. 1998;85(4):1073-1087.
Matsumoto N, Kawarada K, Kamata K, Suzuki TA. Electrical stimulation of tooth pulp increases the expression of c-fos in the cat supraoptic nucleus but not in the paraventricular nucleus. Life Sci. 1993;53(15):1235-41.
Molander C, Xu Q, Grant G. The cytoarchitectonic organization of the spinal cord in the rat. I. The lower thoracic and lumbosacral cord. J Comp Neurol. 1984;230(1):133-41.
Nakao S, Miyamoto E, Masuzawa M, Kambara T, Shingu K. Ketamine-induced c-Fos expression in the mouse posterior cingulate and retrosplenial cortices is mediated not only via NMDA receptors but also via sigma receptors. Brain Res. 2002;926(1-2):191-6.
Rittner HL, Stein C. Involvement of cytokines, chemokines and adhesion molecules in opioid analgesia. Eur J Pain. 2005;9(2):109-12.
Sawamura S, Fujinaga M, Kingery WS, Belanger N, Davies MF, Maze M. Opioidergic and adrenergic modulation of formalin-evoked spinal c-fos mRNA expression and nocifensive behavior in the rat. Eur J Pharmacol. 1999;379(2-3):141-9.
Sawynok J, Reid A. Modulation of formalin-induced behaviors and edema by local and systemic administration of dextromethorphan, memantine and ketamine. Eur J Pharmacol. 2002;450(2):153-62.
Sevostianova N, Danysz W, Bespalov AY. Analgesic effects of morphine and loperamide in the rat formalin test: Interactions with NMDA receptor antagonists. Eur J Pharmacol. 2005;525(1-3):83-90.
Shibata M, Ohkubo T, Takahashi H, Inoki R. Modified formalin test: characteristic biphasic pain response. Pain. 1989;38: 347-52.
Shimoyama M, Shimoyama N, Gorman AL, Elliott KJ, Inturrisi CE. Oral ketamine is antinociceptive in the rat formalin test: role of the metabolite, norketamine. Pain. 1999;81(1-2):85-93.
Sun WZ, Shyu BC, Shieh JY. Nitrous oxide or halothane, or both, fail to suppress c-fos expression in rat spinal cord dorsal horn neurones after subcutaneous formalin. Br J Anaesth. 1996;76(1):99-105.
Tateyama S, Ikeda T, Kosai K, Nakamura T, Kasaba T, Takasaki M, Nishimori T. Endomorphins suppress nociception-induced c-Fos and Zif/268 expression in the rat spinal dorsal horn. Eur J Pharmacol. 2002;451(1):79-87.
Tjølsen A, Berge OG, Hunskaar S, Rosland JH, Hole K. The formalin test: an evaluation of the method. Pain. 1992;51:5-17.
Ueyama T, Saika M, Koreeda C, Senba E. Water immersion-restraint stress induces expression of immediate-early genes in gastrointestinal tract of rats. Am J Physiol. 1998;275(2 Pt 1):G287-95.
Vaccarino AL, Marek P, Liebeskind JC. Stress-induced analgesia prevents the development of the tonic, late phase of pain produced by subcutaneous formalin. Brain Res. 1992;572(1-2):250-2.
Vanderah TW, Wild KD, Takemori AE, Sultana M, Portoghese PS, Bowen WD, Mosberg HI, Porreca F. Mediation of swim-stress antinociception by the opioid delta 2 receptor in the mouse. J Pharmacol Exp Ther. 1992;262(1):190-7.
Vendruscolo LF, Pamplona FA, Takahashi RN. Strain and sex differences in the expression of nociceptive behavior and stress-induced analgesia in rats. Brain Res. 2004;1030(2):277-83.
Warncke T, Stubhaug A, Jørum E. Preinjury treatment with morphine or ketamine inhibits the development of experimentally induced secondary hyperalgesia in man. Pain. 2000;86(3):293-303.
Woda A, Blanc O, Voisin DL, Coste J, Molat JL, Luccarini P. Bidirectional modulation of windup by NMDA receptors in the rat spinal trigeminal nucleus. Eur J Neurosci. 2004;19(8):2009-16.
Yamamoto T, Yaksh TL. Comparison of the antinociceptive effects of pre- and post-treatment with intrathecal morphine and MK801, an NMDA antagonist, on the formalin test in the rat. Anesthesiology. 1992;77(4):757-63.
Zhang SP, Zhang JS, Yung KK, Zhang HQ. Non-opioid-dependent anti-inflammatory effects of low frequency electroacupuncture. Brain Res Bull. 2004;62(4):327-34.
Zou CJ, Liu JD, Zhou YC. Roles of central interleukin-1 on stress-induced-hypertension and footshock-induced-analgesia in rats. Neurosci Lett. 2001;311(1):41-4.
Zasób elektroniczny
Tytuł :
Behavioural and biochemical responses to morphine associated with its motivational properties are altered in adenosine A(2A) receptor knockout mice.
Index Terms :
Sciences bio-médicales et agricoles
Animals
Behavior, Animal -- drug effects
Behavior, Animal -- physiology
Dopamine -- metabolism
Male
Mice
Mice, Knockout
Microdialysis
Morphine -- pharmacology
Motivation
Motor Activity -- drug effects
Nucleus Accumbens -- metabolism
Nucleus Accumbens -- physiology
Pain Threshold -- drug effects
Receptor, Adenosine A2A -- genetics
Receptor, Adenosine A2A -- physiology
A2A adenosine receptors
Knockout mice
Morphine
Place conditioning
Reward
info:eu-repo/semantics/article
info:ulb-repo/semantics/articlePeerReview
info:ulb-repo/semantics/openurl/article
URL :
http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/54304">http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/54304
http://worldcat.org/search?q=on:EQY+http://difusion-oai.ulb.ac.be/oai/request+DCG_ENTIRE_REPOSITORY+CNTCOLL">http://worldcat.org/search?q=on:EQY+http://difusion-oai.ulb.ac.be/oai/request+DCG_ENTIRE_REPOSITORY+CNTCOLL
Zasób elektroniczny

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies