Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Przeglądasz jako GOŚĆ

Wyszukujesz frazę ""Toxicidad"" wg kryterium: Temat


Tytuł :
Evaluación In Vitro del Efecto Neurotóxico Ocasionado por Plomo y Manganeso Individualmente y en Combinación, a través de un Marcador de Lesión (Ldh) y Viabilidad Celular en Neuroblastoma de Rata (Línea Celular B35).
Index Terms :
Toxicidad de Plomo
Toxicidad De Manganeso
Sinergismo De Plomo
Sinergismo de Manganeso
Determinación De Citotoxicidad
info:eu-repo/semantics/bachelorThesis
URL :
http://tesis.ucsm.edu.pe/repositorio/handle/UCSM/9325">http://tesis.ucsm.edu.pe/repositorio/handle/UCSM/9325
Zasób elektroniczny
Tytuł :
Evaluación In Vitro del Efecto Neurotóxico Ocasionado por Plomo y Manganeso Individualmente y en Combinación, a través de un Marcador de Lesión (Ldh) y Viabilidad Celular en Neuroblastoma de Rata (Línea Celular B35).
Index Terms :
Toxicidad de Plomo
Toxicidad De Manganeso
Sinergismo De Plomo
Sinergismo de Manganeso
Determinación De Citotoxicidad
info:eu-repo/semantics/bachelorThesis
URL :
http://tesis.ucsm.edu.pe/repositorio/handle/UCSM/9325">http://tesis.ucsm.edu.pe/repositorio/handle/UCSM/9325
Zasób elektroniczny
Tytuł :
Evaluación In Vitro del Efecto Neurotóxico Ocasionado por Plomo y Manganeso Individualmente y en Combinación, a través de un Marcador de Lesión (Ldh) y Viabilidad Celular en Neuroblastoma de Rata (Línea Celular B35).
Index Terms :
Toxicidad de Plomo
Toxicidad De Manganeso
Sinergismo De Plomo
Sinergismo de Manganeso
Determinación De Citotoxicidad
info:eu-repo/semantics/bachelorThesis
URL :
http://tesis.ucsm.edu.pe/repositorio/handle/UCSM/9325">http://tesis.ucsm.edu.pe/repositorio/handle/UCSM/9325
Zasób elektroniczny
Tytuł :
Evaluación de la toxicidad de sedimentos de lagunas de lixiviados, utilizando el procedimiento de lixiviación para la característica de toxicidad - TCLP y ensayos de toxicidad aguda
Index Terms :
Daphnia pulex; laguna de lixiviado; lixiviado; Poecilia reticulata; procedimiento de lixiviación para la característica de toxicidad – TCLP; relleno sanitario; sedimento; toxicidad aguda.
Daphnia pulex; leachates; leachate lagoon; Poecilia reticulate; sanitary landfill; sediments; TCLP procedure.
info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Tytuły dodatkowe :
Evaluation of toxicity from leachate lagoons sediments, using the toxicity leaching procedure - TCLP and acute toxicity tests
Źródło :
DYNA; Vol. 86, Núm. 208 (2019); 192-198
URL :
https://revistas.unal.edu.co/index.php/dyna/article/view/75348/69996">https://revistas.unal.edu.co/index.php/dyna/article/view/75348/69996
https://revistas.unal.edu.co/index.php/dyna/article/downloadSuppFile/75348/37765">https://revistas.unal.edu.co/index.php/dyna/article/downloadSuppFile/75348/37765
*ref*/Lema, J.; Mendez, R.; Blazquez, R. Characteristics of landfill leachates and alternatives for their treatment, A review. Water, air and soil pollution, 400, pp. 223-350, 1988.
*ref*/Renou, S.; Givaudan, J.G.; Poulain, S.; Dirassouyan, F.; Moulin, P. Landfill leachate treatment: Review and opportunity. Journal of Hazardous Materials, 150, pp. 468–493, 2008.
*ref*/Sang, N.; Han, M.; Li, G.; Huang, M. Landfill leachate affects metabolic responses of Zea mays L. seedlings. Waste Management, 30, pp. 856–862, 2010.
*ref*/Al-Wabel, M.; Al Yehya, W.; Al-Farraj, A.; El-Maghraby, S. Characteristics of landfill leachates and bio-solids of municipal solid waste (MSW) in Riyadh City, Saudi Arabia. Journal of the Saudi Society of Agricultural Sciences, 10(2), pp. 65–70, 2011.
*ref*/Kulikowska, D.; Klimiuk, E. The effect of landfill age on municipal leachate composition. Bioresource Technology, 99, pp. 5981–5985, 2008.
*ref*/Fauziah, S.; Agamuthu, P. Trends in sustainable landfilling in Malaysia, a developing country. Waste management & research: the journal of the International Solid Wastes and Public Cleansing Association, ISWA, 30(7), pp. 656–663, 2012.
*ref*/Tatsi, A.; Zouboulis, A. A field investigation of the quantity and quality of leachate from a municipal solid waste landfill in a Mediterranean climate (Thessaloniki, Greece). Advances in Environmental Research, 6, pp. 207-219, 2002.
*ref*/Fjällborg, B.; Ahlberg, G.; Nilsson, E.; Dave, G. Identification of metal toxicity in sewage sludge leachate. Environment International, 31, pp. 25–31. 2005.
*ref*/Ahlberg, G.; Gustafssion, O.; Wedel, P. Leaching of metals from sewage sludge during one year and their relationship to particle size. Journal Environmental Pollution, 144(2), pp. 545-553, 2006.
*ref*/Silva-Filho, E.; Sella, V.; Silvia, M.; Spinola, E.; Santos, I.; Machado, W.; Lacerda, L. Mercury, zinc, manganese, and iron accumulationin leachate pond sediments from a refuse tip in Southeastern Brazil. Microchemical Journal, 82(2), pp. 196-200, 2006.
*ref*/IDEAM – Instituto de Hidrología, Meteorología y Estudios Ambientales. Ministerio de Ambiente, Vivienda y Desarrollo Territorial – MAVDT. Resolución 0062 “Por la cual se adoptan los protocolos de muestreo y análisis de laboratorio para la caracterización fisicoquímica de los residuos o desechos peligrosos en el país”, Bogotá, 2007.
*ref*/Ministerio de Ambiente, Vivienda y Desarrollo Territorial. Decreto 4741, República de Colombia. 2005, 30 P.
*ref*/Øygard, J.; Gjengedal, E.; Mobbs, H. Trace element exposure in the environment from MSW landfill leachate sediments measured by a sequential extraction technique. Journal Hazardous Materials, 153, pp. 751–758, 2008.
*ref*/Öman, C.; Junestedt, C. Chemical characterization of landfill leachates-400 parameters and compounds. Waste Management, 28(10), pp. 1876–1891, 2008.
*ref*/Cheung, K.C., Chu, L.M., Wong, M.H., Toxic effect of landfill leachate on microalgae. Water Air Soil Pollut. 69, pp. 337–349, 1993.
*ref*/Bortolotto, T., Bertoldo, J.B., da Silveira, F.Z., Defaveri, T.M., Silvano, J., Pich, C.T., Evaluation of the toxic and genotoxic potential of landfill leachates using bioassays. Environ. Toxicol. Pharmacol., 28, pp. 288–293, 2009.
*ref*/Ellouze, M., Aloui, F., Sayadi, S. Effect of high ammonia concentrations on fungal treatment of Tunisian landfill leachates. Desalination. 246(1-3), pp. 468-477, 2009.
*ref*/Singh, V., Mittal, A. Toxicity analysis and public health aspects of municipal landfill leachate: a case study of Okhla landfill. Delhi. In: Proceedings of the 8th World Wide Workshop for Young Environmental Scientists. 2009.
*ref*/Alkassasbeh, J.Y.M., Heng, L.Y., Surif, S. Toxicity testing and the effect of landfill leachate in Malaysia on behavior of common carp (Cyprinus carpio L., 1758; Pisces, Cyprinidae). Am. J. Environ. Sci., 5, pp. 209–217, 2009.
*ref*/Rivera-Laguna, E.; Barba-Ho, L.; Torres-Lozada, P. Determinación de la toxicidad de lixiviados provenientes de residuos sólidos urbanos mediante indicadores biológicos. Afinidad LXX, 563, pp. 183-188, 2013.
*ref*/Huerta, B.; Ferrer, P.; Ribé, V.; Larsson, M.; Engwall, M.; Wojciechowska, E.; Waara, S. Hazard assessment of sediments from a wetland system for treatment of landfill leachate using bioassays. Ecotoxicology and Environmental Safety, 97, pp. 255-262, 2013.
*ref*/Carabalí-Rivera, Y. S, Barba-Ho, L. E, & Torres-Lozada, P. Determination of leachate toxicity through acute toxicity using Daphnia pulex and anaerobic toxicity assays. Ingeniería e Investigación, 37(1), pp. 16-24, 2017.
*ref*/Ghosh; P., Shekhar, I., Kaushik, A. Bioassays for toxicological risk assessment of landfill leachate: A review. Ecotoxicology and Environmental Safety, 141, pp. 259–270, 2009.
*ref*/Bert, V., Lors, C., Ponge, J., Caron, L., Biaz, A., Dazy, M., Masfaraud, J. Metal immobilization and soil amendment efficiency at a contaminated sediment landfill site: A field study focusing on plants, springtails, and bacteria. Environmental Pollution, 169, pp. 1-11, 2012.
*ref*/USEPA. U.S. Environmental Protection Agency. Process Design Manual. Land Aplication of Sewage Sludge and Domestic Septage, 1995.
*ref*/APHA, AWWA, WEF. Standard methods for the examination of water and wastewater, American Public Health Association, American Water Works Association and Water Environment Federation. 22th ed. Washington DC, 2012.
*ref*/Instituto Colombiano De Normas Técnicas Y Certificación (ICONTEC). Norma Técnica Colombiana NTC 5167. Productos para la industria agrícola. Productos orgánicos usados como abonos o fertilizantes y enmiendas de suelo, Bogotá (Colombia), 2004.
*ref*/TORRES, P; BARBA, L; PIZARRO, C. Mitigación de la toxicidad anaerobia de lixiviados mediante mezclas con agua residual doméstica. Rev. Fac. Ing. Univ. Antioquia, 53, pp. 64-74, 2010.
*ref*/Erich, M.; Fitzgerald, C.; Porter, G. The effect of organic amendments on phosphorus chemistry in a potato cropping system. Agriculture, Ecosystems and Environment, 88 (1), pp. 79-88, 2002.
*ref*/EPA. A Plain English Guide to the EPA Part 503 Biosolids Rule. 1994, 183 P.
*ref*/Fernández, L.; Rojas, N.; Roldán, T.; Ramirez, M.; Zegarra, H.; Uribe, R.; Reyes, R.; Flores, D.; Arce, J. Manual de técnicas de análisis de suelos, 2006.
*ref*/Qiu, S.; Mccomb, A.; Bell, R. Ratios of C, N and P in soil water direct microbial immobilisation–mineralisation and N availability in nutrient amended sandy soils in southwestern Australia. Agriculture, Ecosystems and Environment, 127, pp. 93–99, 2008.
*ref*/Villarroel, J. Manual práctico para la interpretación de análisis de suelos en laboratorio. AGRUCO Serie técnica No. 10. Bolivia, 1988.
*ref*/Aulestia, K. Respuestas fisiológicas de tres especies vegetales nativas sometidas a tratamiento con lixiviado de relleno sanitario, Trabajo de grado (Biología). Facultad de Ciencias, Programa académico de Biología, Universidad del Valle, Santiago de Cali, Colombia. 2012.
*ref*/Isidori, M; Lavorgna, M; Nardelli, A; Parrella, A. Toxicity identification evaluation of leachates from municipal solid waste landfills: a multispecies approach. Chemosphere, 52, pp. 85–94, 2003.
*ref*/Marttinen, S.K., Kettunen, R.H., Sormunen, K.M., Soimasuo, R.M., Rintala, J.A. Screening of physical-chemical methods for removal of organic material, nitrogen and toxicity from low strength landfill leachates. Chemosphere, 46, pp. 851–858, 2002.
*ref*/Matejczyk, M., Płaza, G.A., Nałe˛cz-Jawecki, G., Ulfig, K., Markowska-Szczupak, A. Estimation of the environmental risk posed by landfills using chemical, microbiological and ecotoxicological testing of leachates. Chemosphere, 82, pp. 1017–1023, 2011.
*ref*/Jurkoniene, S., Maksimov, G., Darginavicˇiene, J., Sadauskas, K., Vitkus, R., Manusadzˇianas, L. Leachate toxicity assessment by responses of algae Nitellopsis obtusa membrane atpase and cell resting potential, and with Daphtoxkit F™ magna test. Environ. Toxicol., 19, pp. 403–408, 2004.
Zasób elektroniczny
Tytuł :
Hydrocarbonoclastic bacteria of the genus Pseudomonas in Samanea saman (Jacq.) Merr. rhizosphere
Index Terms :
Contaminación; toxicidad; petróleo
Contaminación; toxicidad; petróleo; Pseudomonas; acción hidrocarburoclástica
contamination; toxicity; petroleum; Pseudomonas; hydrocarbonoclastic action
info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Artículo revisado por pares
Tytuły dodatkowe :
Bacterias hidrocarburoclásticas del género Pseudomonas en la rizosfera de Samanea saman (Jacq.) Merr.
Źródło :
Revista Colombiana de Biotecnología; Vol. 19, Núm. 1 (2017); 29-37
URL :
https://revistas.unal.edu.co/index.php/biotecnologia/article/view/57408/doc">https://revistas.unal.edu.co/index.php/biotecnologia/article/view/57408/doc
https://revistas.unal.edu.co/index.php/biotecnologia/article/view/57408/pdf">https://revistas.unal.edu.co/index.php/biotecnologia/article/view/57408/pdf
https://revistas.unal.edu.co/index.php/biotecnologia/article/downloadSuppFile/57408/18881">https://revistas.unal.edu.co/index.php/biotecnologia/article/downloadSuppFile/57408/18881
https://revistas.unal.edu.co/index.php/biotecnologia/article/downloadSuppFile/57408/18882">https://revistas.unal.edu.co/index.php/biotecnologia/article/downloadSuppFile/57408/18882
*ref*/Achuba F.I. 2006. The effect of sublethal concentrations of crude oil on the growth and metabolism of cowpea (Vigna unguiculata) seedlings. The Environmentalist. 26(1):17–20.
*ref*/Adekunle O. 2012. Mechanisms of antimicrobial resistance in bacteria, general approach. Int. J. Pharm. Med. & Bio. Sc. 1(2):166-187.
*ref*/Adenipekun C.O., Oyetunji O.J. & Kassim L.S. 2009. Screening of Abelmoschus esculentus L. Moench for tolerance to spent engine oil. J. Appl. Biosci. 20:1131-1137.
*ref*/Agrawal T., Anil S., Kotasthane A. S., Kushwah R. 2015. Genotypic and phenotypic diversity of polyhydroxybutyrate (PHB) producing Pseudomonas putida isolates of Chhattisgarh region and assessment of its phosphate solubilizing ability. 3 Biotech. 5:45–60.
*ref*/Arora N.K. 2015. Plant Microbes Symbiosis: Plant Facets. Springer, India. 381 p.
*ref*/Baishya M. & Chandra M. 2015. Phytoremediation of crude oil using two local varieties of castor oil plant (Ricinus communis) of Assam. In. J. Pharm. Bio. Sci. 6(4): (B)1173-1182.
*ref*/Benedek T., Máthé I., Salamon R., Rákos S., Pásztohy Z., Márialigeti K. & Szabolcs Lány S. 2012. Potential bacterial soil inoculant made up by Rhodococcus sp. and Pseudomonas sp. for remediation in situ of hydrocarbon – and heavy metal polluted soils. Studia UBB Chemia, 57(3):199 – 211.
*ref*/Brenner, J.; Kreig; Stanley, T. 2005. Bergey's Manual of Systematic Bacteriology. The Probacteria, Part A. Introductory Essay, New York: Springer, p 27.
*ref*/Bushnell L. D. & Hass H. F. 1941. The utilization of certain hydrocarbons by microorganisms. J. Bacteriol. 41(5):653-673.
*ref*/Chibuike G. U. & Obiora S. C. 2014. Bioremediation of hydrocarbon-polluted soils for improved crop performance. Int. J. Environ. Sci. 4(5):840-858.
*ref*/Cuenca M. del S., Roca A., Molina-Santiago C., Duque E., Armengaud J., Gómez-Garcia M. R. & Ramos J. L 2016. Understanding butanol tolerance and assimilation in Pseudomonas putida BIRD-1: an integrated omics approach. Microb. Biotechnol. 9(1):100-115.
*ref*/Das N. & Chandran P. 2011. Microbial degradation of petroleum hydrocarbon contaminants: An overview. Biotechnol. Res. Int. 2011:1-13.
*ref*/De Oliveira G. B., Favarin L., Luchese R. H. & McIntosh D. 2015. Psychrotrophic bacteria in milk: How much do we really know?. Braz. J. Microbiol. 46(2):313–321.
*ref*/Edwin-Wosu N. L. 2013. Phytoremediation (Series 5): Organic carbon, matter, phosphorus and nitrogen trajectories as indices of assessment in a macrophytic treatment of hydrocarbon degraded soil environment. Eur J Exp Biol, 3(3):11-17.
*ref*/Eze C. N., Maduka J. N., Ogbonna J. C. & Eze E. A.. 2013. Effects of bonny light crude oil contamination on the germination, shoot growth and rhizobacterial flora of Vigna unguiculata and Arachis hypogea grown in sandy loam soil. Sci. Res. Essays. 8(2):99-107.
*ref*/Fernández M., Conde S., Duque E. & Ramos J. L. 2013. In vivo gene expression of Pseudomonas putida KT2440 in the rhizosphere of different plants. Microbial. Biotech. 6:307-313.
*ref*/Flemming H.C. & Wingender J. 2010. The biofilm matrix. Nat. Rev. Microbiol. 8(9):623-633.
*ref*/Gofar N. 2013. Synergism of wild grass and hydrocarbonoclastic bacteria petroleum biodegradation. J. Trop. Soils. 18(2): 161-168.
*ref*/Government of Canada (GC). 2015. Final Screening Assessment Report for Pseudomonas stutzeri ATCC 17587, Canada: Ministery of the Environment and Ministery of Health. 40 p.
*ref*/Goswami D., Thakker J. N. & Dhandhukia P. C. 2016. Portraying mechanics of plant growth promoting rhizobacteria (PGPR): A review. Cogent Food & Agric. 2: 1127500.
*ref*/Hassaine A. & Bordjiba O. 2015. Metabolic capacities of three strains of Pseudomonas aeruginosa to biodegrade crude oil. Adv. Environ. Biol. 9(18): 139-146.
*ref*/Inckot R.C., Bona C., Souza L.A. de & Santos G.O. 2008. Anatomia das plântulas de Mimosa pilulifera (Leguminosae) crescendo em solo contaminado com petróleo e solo biorremediado. Rodriguésia 59(3): 513-524.
*ref*/Janek T., Łukaszewicz M. & Krasowska A. 2013. Identification and characterization of biosurfactants produced by the Arctic bacterium Pseudomonas putida BD2, Colloids and Surfaces B: Biointerfaces. 110:379-386.
*ref*/Kabir M., Zafar Iqbal M. & Shafiq M. 2012. Traffic density, climatic conditions and seasonal growth of Samanea saman (Jacq.) Merr. on different polluted roads of karachi city. Pak. J. Bot. 44(6):1881-1890.
*ref*/Keller, R. 2004. Identification of tropical woody plants in the absence of flowers, a field guide, 2nd. Edition, Switzerland: Birkhäuser Verlag Basel, 294 p.
*ref*/Khan J. A. & Abbas S. H. 2011. Isolation and characterization of micro-organism from oil contaminated sites. Adv. Appl. Sci. Res. 2(3):455-460.
*ref*/Komolafe R. J., Akinola O. M. & Agbolade O. J. 2015. Effect of petrol and spent oil on the growth of Guinea Corn (Sorghum bicolor L.). Int. J. Plant Biol. 6(1):5883.
*ref*/Kumar G. P., Desai S., Amalraj L. & Reddy G. 2015. Isolation of fluorescent Pseudomonas spp. from diverse agro-ecosystems of India and characterization of their PGPR traits. Bacteriol. J. 5 (1): 13-24.
*ref*/Kumara M., Leon V., De Sisto Materano A., Ilzins O. A., Galindo-Castro I. & Fuenmayor S. L. 2006. Polycyclic aromatic hydrocarbon degradation by biosurfactant-producing Pseudomonas sp. IR1. Z. Naturforsch C. 61(3-4):203-212.
*ref*/Lăzăroaie M.M. 2009. Investigation of saturated and aromatic hydrocarbon resistance mechanisms in Pseudomonas aeruginosa IBBML1 Cen. Eur. J. Biol. 4(4):469-481.
*ref*/Leite G. G. F., Figueirôa J. V., Almeida T. C. M., Valões J. L., Marques W. F., Duarte M. D. D. C. & Gorlach-Lira K. 2016. Production of rhamnolipids and diesel oil degradation by bacteria isolated from soil contaminated by petroleum. Biotechnol. Progress. 32(2): 262–270.
*ref*/Lorestani B., Kolahchi N., Ghasemi M. & Cheraghi M. 2014. Changes germination, growth and anatomy Vicia ervilia in response to light crude oil stress. J. Chem. Health Risks 4(1):45-52.
*ref*/Maheshwari, D. K.; Dheeman, S.; Agarwal M. 2015. Phytohormone-producing PGPR for sustainable agriculture. In D. K. Maheshwari (Ed.), Bacterial metabolites in sustainable agroecosystem, Swizerland: Springer International Publ. p 159.
*ref*/Mead G. C. & Adams B. W. 1977. A selective medium for the rapid isolation of pseudomonads associated with poultry meat spoilage Br. Poult. Sci. 18(6):661-670.
*ref*/Mikkonen A., Kondo E., Lapp K., Wallenius K., Lindstom K., Hartikainem H. & Suominen L. 2011. Contaminant and plant derived changes en soil chemical and microbiological indicators during fuel oil rhizoremediation with Galega orientalis. Geoderma 160(3-4):336-346.
*ref*/Missouri Botanical Garden (MBG). 2016. Tropicos.org. 07 Feb 2016. Disponible en http://www.tropicos.org.
*ref*/Moussa T. A. A., Mohamed M. S. & Samak N. 2014. Production and characterization of di-rhamnolipid produced by Pseudomonas aeruginosa TMN. Braz. J. Chem. Eng. 31(4):867-880.
*ref*/Narváez-Flores S., Gómez L. M., & Martínez M. M. 2008. , Selection of bacteria with hydrocarbon degrading capacity isolated from Colombian Caribbean sediments., Bol. Invest. Mar. Cost. 37:63-77.
*ref*/Ogbulie T. E., Duru C. & Nwanebu F. C. 2015. Interaction effects of plants and indigenous micro-organisms on degradation of N-alkanes in crude oil contaminated agricultural soil. J. Ecosys. Ecograph. 5(2): 166-181.
*ref*/Olanipekun O., Ogunbayo A. & Layokun S. 2012. Estimation of biomass energetic yield and maintenance energy of growth of Pseudomonas aeruginosa and Pseudomonas fluorescens on diesel oil. Int. J. Res. Chem. Environ. 2(1):206-209.
*ref*/Osawaru M. E., Ogwu M. C. & Braimah L. 2013. Growth responses of two cultivated okra species (Abelmoschus caillei (A. Chev) Stevels and Abelmoschus esculentus (Linn.) Moench) in crude oil contaminated soil. Nigerian J. Basic Appl. Sci. 21(3):215-226.
*ref*/Parra J. & Gámez A. 2012. Determinación de especies arbóreas a través de caracteres vegetativos en la Estación Experimental Caparo, estado Barinas, Venezuela. Revista Forestal Venezolana. 56(2):135-145.
*ref*/Ramos J. L., Cuenca S., Molina-Santiago C., Segura A., Duque E., Gómez-García M. R., Udaondo Z. & Roca A. 2015. Mechanisms of solvent resistance mediated by interplay of cellular factors in Pseudomonas putida. FEMS Microbiol. Rev. 39(4):555-566.
*ref*/Rasamiravaka T., Labtani Q., Pierre Duez P. & El Jaziri, M. 2015. The formation of biofilms by Pseudomonas aeruginosa: A review of the natural and synthetic compounds interfering with control mechanisms. BioMed Res. Intern. 2015:1-17.
*ref*/Rodríguez A. & Gámez A. 2010. Clave vegetativa para la identificación de árboles de la familia Fabaceae de la ciudad de Mérida, Venezuela. Pittieria 34: 89-111.
*ref*/Saitou K., Furuhata K., Kawakami Y. & Fukuyama M. 2009. Biofilm formation abilities and disinfectant-resistance of Pseudomonas aeruginosa isolated from cockroaches captured in hospitals. Biocontrol Sci. 14(2):65-68.
*ref*/Sebastiani L.F., Scebba R. & Tognett R. 2004. Heavy metal accumulation and growth responses in popular clones Eridana (popular deltoids) and 1-214 (p. deltoids x euramariceana) exposed to industrial waste. Environ. Exp. Bot. 52(1):79-88.
*ref*/Smith, R.; Casadiego, J.; Sanabria, M.; Yunes F. 1996. Clave para los árboles de los Llanos de Venezuela basada en características vegetativas, Venezuela: Sociedad Venezolana de Ciencias Naturales, 275 p.
*ref*/Tanee F.B.G. & Albert E. 2015. Reconnaissance assessment of long-term effects of crude oil spill on soil chemical properties and plant composition at Kwawa, Ogoni, Nigeria. J. Environ. Sci. Technol. 8 (6):320-329.
*ref*/Udeh N. U., Nwaogazie I. L. & Momoh Y., 2013. Bio-remediation of a crude oil contaminated soil using water hyacinth (Eichhornia crassipes). Adv Appl Sci Res, 4(2):362-369.
*ref*/Uğur A., Ceylan Ö. & Aslım B. 2012. Characterization of Pseudomonas spp. from seawater of the southwest coast of Turkey. J. Biol. Environ. Sci. 6(16):15-23.
*ref*/Weber F.J , Isken S. & de Bont J. A. 1994. Cis/trans isomerization of fatty acids as a defence mechanism of Pseudomonas putida strains to toxic concentrations of toluene. Microbiol. 140(8):2013–2017.
*ref*/Windevoxhell R., Malaver N., Bastardo H., Subero N., Sánchez N. & Marcano L. 2009. Caracterización de la comunidad bacteriana de un ripio de perforación y aislamiento de un consorcio bacteriano con capacidad hidrocarburoclástica Rev Ingeniería UC. 16(2):14-19.
*ref*/Xiao M., Sun S., Zhang Z., Wang J., Qiu L., Sun H., Song Z., Zhang B., Gao D., Zhang G. & Wu W. 2016. Analysis of bacterial diversity in two oil blocks from two low permeability reservoirs with high salinities. Sci. Rep. 6:19600 DOI: 10.1038/srep19600. 31 enero 2016 Disponible en http://www.nature.com/articles/srep19600
Zasób elektroniczny
Tytuł :
Hydrocarbonoclastic bacteria of the genus Pseudomonas in Samanea saman (Jacq.) Merr. rhizosphere
Index Terms :
Contaminación; toxicidad; petróleo
Contaminación; toxicidad; petróleo; Pseudomonas; acción hidrocarburoclástica
contamination; toxicity; petroleum; Pseudomonas; hydrocarbonoclastic action
info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Artículo revisado por pares
Tytuły dodatkowe :
Bacterias hidrocarburoclásticas del género Pseudomonas en la rizosfera de Samanea saman (Jacq.) Merr.
Źródło :
Revista Colombiana de Biotecnología; Vol. 19, Núm. 1 (2017); 29-37
URL :
https://revistas.unal.edu.co/index.php/biotecnologia/article/view/57408/doc">https://revistas.unal.edu.co/index.php/biotecnologia/article/view/57408/doc
https://revistas.unal.edu.co/index.php/biotecnologia/article/view/57408/pdf">https://revistas.unal.edu.co/index.php/biotecnologia/article/view/57408/pdf
https://revistas.unal.edu.co/index.php/biotecnologia/article/downloadSuppFile/57408/18881">https://revistas.unal.edu.co/index.php/biotecnologia/article/downloadSuppFile/57408/18881
https://revistas.unal.edu.co/index.php/biotecnologia/article/downloadSuppFile/57408/18882">https://revistas.unal.edu.co/index.php/biotecnologia/article/downloadSuppFile/57408/18882
*ref*/Achuba F.I. 2006. The effect of sublethal concentrations of crude oil on the growth and metabolism of cowpea (Vigna unguiculata) seedlings. The Environmentalist. 26(1):17–20.
*ref*/Adekunle O. 2012. Mechanisms of antimicrobial resistance in bacteria, general approach. Int. J. Pharm. Med. & Bio. Sc. 1(2):166-187.
*ref*/Adenipekun C.O., Oyetunji O.J. & Kassim L.S. 2009. Screening of Abelmoschus esculentus L. Moench for tolerance to spent engine oil. J. Appl. Biosci. 20:1131-1137.
*ref*/Agrawal T., Anil S., Kotasthane A. S., Kushwah R. 2015. Genotypic and phenotypic diversity of polyhydroxybutyrate (PHB) producing Pseudomonas putida isolates of Chhattisgarh region and assessment of its phosphate solubilizing ability. 3 Biotech. 5:45–60.
*ref*/Arora N.K. 2015. Plant Microbes Symbiosis: Plant Facets. Springer, India. 381 p.
*ref*/Baishya M. & Chandra M. 2015. Phytoremediation of crude oil using two local varieties of castor oil plant (Ricinus communis) of Assam. In. J. Pharm. Bio. Sci. 6(4): (B)1173-1182.
*ref*/Benedek T., Máthé I., Salamon R., Rákos S., Pásztohy Z., Márialigeti K. & Szabolcs Lány S. 2012. Potential bacterial soil inoculant made up by Rhodococcus sp. and Pseudomonas sp. for remediation in situ of hydrocarbon – and heavy metal polluted soils. Studia UBB Chemia, 57(3):199 – 211.
*ref*/Brenner, J.; Kreig; Stanley, T. 2005. Bergey's Manual of Systematic Bacteriology. The Probacteria, Part A. Introductory Essay, New York: Springer, p 27.
*ref*/Bushnell L. D. & Hass H. F. 1941. The utilization of certain hydrocarbons by microorganisms. J. Bacteriol. 41(5):653-673.
*ref*/Chibuike G. U. & Obiora S. C. 2014. Bioremediation of hydrocarbon-polluted soils for improved crop performance. Int. J. Environ. Sci. 4(5):840-858.
*ref*/Cuenca M. del S., Roca A., Molina-Santiago C., Duque E., Armengaud J., Gómez-Garcia M. R. & Ramos J. L 2016. Understanding butanol tolerance and assimilation in Pseudomonas putida BIRD-1: an integrated omics approach. Microb. Biotechnol. 9(1):100-115.
*ref*/Das N. & Chandran P. 2011. Microbial degradation of petroleum hydrocarbon contaminants: An overview. Biotechnol. Res. Int. 2011:1-13.
*ref*/De Oliveira G. B., Favarin L., Luchese R. H. & McIntosh D. 2015. Psychrotrophic bacteria in milk: How much do we really know?. Braz. J. Microbiol. 46(2):313–321.
*ref*/Edwin-Wosu N. L. 2013. Phytoremediation (Series 5): Organic carbon, matter, phosphorus and nitrogen trajectories as indices of assessment in a macrophytic treatment of hydrocarbon degraded soil environment. Eur J Exp Biol, 3(3):11-17.
*ref*/Eze C. N., Maduka J. N., Ogbonna J. C. & Eze E. A.. 2013. Effects of bonny light crude oil contamination on the germination, shoot growth and rhizobacterial flora of Vigna unguiculata and Arachis hypogea grown in sandy loam soil. Sci. Res. Essays. 8(2):99-107.
*ref*/Fernández M., Conde S., Duque E. & Ramos J. L. 2013. In vivo gene expression of Pseudomonas putida KT2440 in the rhizosphere of different plants. Microbial. Biotech. 6:307-313.
*ref*/Flemming H.C. & Wingender J. 2010. The biofilm matrix. Nat. Rev. Microbiol. 8(9):623-633.
*ref*/Gofar N. 2013. Synergism of wild grass and hydrocarbonoclastic bacteria petroleum biodegradation. J. Trop. Soils. 18(2): 161-168.
*ref*/Government of Canada (GC). 2015. Final Screening Assessment Report for Pseudomonas stutzeri ATCC 17587, Canada: Ministery of the Environment and Ministery of Health. 40 p.
*ref*/Goswami D., Thakker J. N. & Dhandhukia P. C. 2016. Portraying mechanics of plant growth promoting rhizobacteria (PGPR): A review. Cogent Food & Agric. 2: 1127500.
*ref*/Hassaine A. & Bordjiba O. 2015. Metabolic capacities of three strains of Pseudomonas aeruginosa to biodegrade crude oil. Adv. Environ. Biol. 9(18): 139-146.
*ref*/Inckot R.C., Bona C., Souza L.A. de & Santos G.O. 2008. Anatomia das plântulas de Mimosa pilulifera (Leguminosae) crescendo em solo contaminado com petróleo e solo biorremediado. Rodriguésia 59(3): 513-524.
*ref*/Janek T., Łukaszewicz M. & Krasowska A. 2013. Identification and characterization of biosurfactants produced by the Arctic bacterium Pseudomonas putida BD2, Colloids and Surfaces B: Biointerfaces. 110:379-386.
*ref*/Kabir M., Zafar Iqbal M. & Shafiq M. 2012. Traffic density, climatic conditions and seasonal growth of Samanea saman (Jacq.) Merr. on different polluted roads of karachi city. Pak. J. Bot. 44(6):1881-1890.
*ref*/Keller, R. 2004. Identification of tropical woody plants in the absence of flowers, a field guide, 2nd. Edition, Switzerland: Birkhäuser Verlag Basel, 294 p.
*ref*/Khan J. A. & Abbas S. H. 2011. Isolation and characterization of micro-organism from oil contaminated sites. Adv. Appl. Sci. Res. 2(3):455-460.
*ref*/Komolafe R. J., Akinola O. M. & Agbolade O. J. 2015. Effect of petrol and spent oil on the growth of Guinea Corn (Sorghum bicolor L.). Int. J. Plant Biol. 6(1):5883.
*ref*/Kumar G. P., Desai S., Amalraj L. & Reddy G. 2015. Isolation of fluorescent Pseudomonas spp. from diverse agro-ecosystems of India and characterization of their PGPR traits. Bacteriol. J. 5 (1): 13-24.
*ref*/Kumara M., Leon V., De Sisto Materano A., Ilzins O. A., Galindo-Castro I. & Fuenmayor S. L. 2006. Polycyclic aromatic hydrocarbon degradation by biosurfactant-producing Pseudomonas sp. IR1. Z. Naturforsch C. 61(3-4):203-212.
*ref*/Lăzăroaie M.M. 2009. Investigation of saturated and aromatic hydrocarbon resistance mechanisms in Pseudomonas aeruginosa IBBML1 Cen. Eur. J. Biol. 4(4):469-481.
*ref*/Leite G. G. F., Figueirôa J. V., Almeida T. C. M., Valões J. L., Marques W. F., Duarte M. D. D. C. & Gorlach-Lira K. 2016. Production of rhamnolipids and diesel oil degradation by bacteria isolated from soil contaminated by petroleum. Biotechnol. Progress. 32(2): 262–270.
*ref*/Lorestani B., Kolahchi N., Ghasemi M. & Cheraghi M. 2014. Changes germination, growth and anatomy Vicia ervilia in response to light crude oil stress. J. Chem. Health Risks 4(1):45-52.
*ref*/Maheshwari, D. K.; Dheeman, S.; Agarwal M. 2015. Phytohormone-producing PGPR for sustainable agriculture. In D. K. Maheshwari (Ed.), Bacterial metabolites in sustainable agroecosystem, Swizerland: Springer International Publ. p 159.
*ref*/Mead G. C. & Adams B. W. 1977. A selective medium for the rapid isolation of pseudomonads associated with poultry meat spoilage Br. Poult. Sci. 18(6):661-670.
*ref*/Mikkonen A., Kondo E., Lapp K., Wallenius K., Lindstom K., Hartikainem H. & Suominen L. 2011. Contaminant and plant derived changes en soil chemical and microbiological indicators during fuel oil rhizoremediation with Galega orientalis. Geoderma 160(3-4):336-346.
*ref*/Missouri Botanical Garden (MBG). 2016. Tropicos.org. 07 Feb 2016. Disponible en http://www.tropicos.org.
*ref*/Moussa T. A. A., Mohamed M. S. & Samak N. 2014. Production and characterization of di-rhamnolipid produced by Pseudomonas aeruginosa TMN. Braz. J. Chem. Eng. 31(4):867-880.
*ref*/Narváez-Flores S., Gómez L. M., & Martínez M. M. 2008. , Selection of bacteria with hydrocarbon degrading capacity isolated from Colombian Caribbean sediments., Bol. Invest. Mar. Cost. 37:63-77.
*ref*/Ogbulie T. E., Duru C. & Nwanebu F. C. 2015. Interaction effects of plants and indigenous micro-organisms on degradation of N-alkanes in crude oil contaminated agricultural soil. J. Ecosys. Ecograph. 5(2): 166-181.
*ref*/Olanipekun O., Ogunbayo A. & Layokun S. 2012. Estimation of biomass energetic yield and maintenance energy of growth of Pseudomonas aeruginosa and Pseudomonas fluorescens on diesel oil. Int. J. Res. Chem. Environ. 2(1):206-209.
*ref*/Osawaru M. E., Ogwu M. C. & Braimah L. 2013. Growth responses of two cultivated okra species (Abelmoschus caillei (A. Chev) Stevels and Abelmoschus esculentus (Linn.) Moench) in crude oil contaminated soil. Nigerian J. Basic Appl. Sci. 21(3):215-226.
*ref*/Parra J. & Gámez A. 2012. Determinación de especies arbóreas a través de caracteres vegetativos en la Estación Experimental Caparo, estado Barinas, Venezuela. Revista Forestal Venezolana. 56(2):135-145.
*ref*/Ramos J. L., Cuenca S., Molina-Santiago C., Segura A., Duque E., Gómez-García M. R., Udaondo Z. & Roca A. 2015. Mechanisms of solvent resistance mediated by interplay of cellular factors in Pseudomonas putida. FEMS Microbiol. Rev. 39(4):555-566.
*ref*/Rasamiravaka T., Labtani Q., Pierre Duez P. & El Jaziri, M. 2015. The formation of biofilms by Pseudomonas aeruginosa: A review of the natural and synthetic compounds interfering with control mechanisms. BioMed Res. Intern. 2015:1-17.
*ref*/Rodríguez A. & Gámez A. 2010. Clave vegetativa para la identificación de árboles de la familia Fabaceae de la ciudad de Mérida, Venezuela. Pittieria 34: 89-111.
*ref*/Saitou K., Furuhata K., Kawakami Y. & Fukuyama M. 2009. Biofilm formation abilities and disinfectant-resistance of Pseudomonas aeruginosa isolated from cockroaches captured in hospitals. Biocontrol Sci. 14(2):65-68.
*ref*/Sebastiani L.F., Scebba R. & Tognett R. 2004. Heavy metal accumulation and growth responses in popular clones Eridana (popular deltoids) and 1-214 (p. deltoids x euramariceana) exposed to industrial waste. Environ. Exp. Bot. 52(1):79-88.
*ref*/Smith, R.; Casadiego, J.; Sanabria, M.; Yunes F. 1996. Clave para los árboles de los Llanos de Venezuela basada en características vegetativas, Venezuela: Sociedad Venezolana de Ciencias Naturales, 275 p.
*ref*/Tanee F.B.G. & Albert E. 2015. Reconnaissance assessment of long-term effects of crude oil spill on soil chemical properties and plant composition at Kwawa, Ogoni, Nigeria. J. Environ. Sci. Technol. 8 (6):320-329.
*ref*/Udeh N. U., Nwaogazie I. L. & Momoh Y., 2013. Bio-remediation of a crude oil contaminated soil using water hyacinth (Eichhornia crassipes). Adv Appl Sci Res, 4(2):362-369.
*ref*/Uğur A., Ceylan Ö. & Aslım B. 2012. Characterization of Pseudomonas spp. from seawater of the southwest coast of Turkey. J. Biol. Environ. Sci. 6(16):15-23.
*ref*/Weber F.J , Isken S. & de Bont J. A. 1994. Cis/trans isomerization of fatty acids as a defence mechanism of Pseudomonas putida strains to toxic concentrations of toluene. Microbiol. 140(8):2013–2017.
*ref*/Windevoxhell R., Malaver N., Bastardo H., Subero N., Sánchez N. & Marcano L. 2009. Caracterización de la comunidad bacteriana de un ripio de perforación y aislamiento de un consorcio bacteriano con capacidad hidrocarburoclástica Rev Ingeniería UC. 16(2):14-19.
*ref*/Xiao M., Sun S., Zhang Z., Wang J., Qiu L., Sun H., Song Z., Zhang B., Gao D., Zhang G. & Wu W. 2016. Analysis of bacterial diversity in two oil blocks from two low permeability reservoirs with high salinities. Sci. Rep. 6:19600 DOI: 10.1038/srep19600. 31 enero 2016 Disponible en http://www.nature.com/articles/srep19600
Zasób elektroniczny
Tytuł :
Toxicidad de microcontaminantes acuáticos sobre organismos unicelulares
Index Terms :
Chlamydomonas reinhardtii
Polipropileno
Bisfenol A
Microplástico
Contaminante emergente
Toxicidad
Contaminante emerxente
Toxicidade
Polypropilene
Bisphenol A
Microplastic
Emerging pollutant
Toxicity
info:eu-repo/semantics/bachelorThesis
Źródło :
http://hdl.handle.net/2183/25414
URL :
http://hdl.handle.net/2183/25414">http://hdl.handle.net/2183/25414
Zasób elektroniczny
Tytuł :
Efectos toxicológicos y neuropsiquiátricos producidos por consumo de cocaína
Index Terms :
drogas de abuso, cocaína, toxicología, toxicidad aguda, toxicidad crónica.
info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Źródło :
Revista de la Facultad de Medicina; Vol. 53, núm. 1 (2005); 10-26
URL :
http://www.revistas.unal.edu.co/index.php/revfacmed/article/view/43483">http://www.revistas.unal.edu.co/index.php/revfacmed/article/view/43483
http://www.revistas.unal.edu.co/index.php/revfacmed/article/view/43483/44756">http://www.revistas.unal.edu.co/index.php/revfacmed/article/view/43483/44756
Zasób elektroniczny
Tytuł :
Ecotoxicological aquatic and terrestrial risk of biopesticide Sandbox tree, Hura crepitans (Euphorbiaceae)
Index Terms :
aquatic toxicity; ecotoxicological risk; Hura crepitans; sandbox; terrestrial toxicity
catahua; Hura crepitans; riesgo ecotoxicológico; toxicidad acuática; toxicidad terrestre
info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Peer reviewed article
Artículo revisado por pares
Tytuły dodatkowe :
Riesgo ecotoxicológico acuático y terrestre del bioplaguicida catahua, Hura crepitans (Euphorbiaceae)
URL :
http://ojs.diffundit.com/index.php/revtoxicol/article/view/587">http://ojs.diffundit.com/index.php/revtoxicol/article/view/587
http://ojs.diffundit.com/index.php/revtoxicol/article/view/587/557">http://ojs.diffundit.com/index.php/revtoxicol/article/view/587/557
http://ojs.diffundit.com/index.php/revtoxicol/article/downloadSuppFile/587/384">http://ojs.diffundit.com/index.php/revtoxicol/article/downloadSuppFile/587/384
Zasób elektroniczny
Tytuł :
Physical and chemical characterisation of superficial sediment of the Ribarroja Reservoir (River Ebro, NE Spain)
Index Terms :
Superficial sediment
reservoir sediment
granulometry
Probable Effect level
Threshold Effect Level
Sedimento superficial
sedimento de embalse
granulometría
Nivel de Toxicidad Probable
Nivel Umbral de Toxicidad
text (article)
URL :
http://dialnet.unirioja.es/servlet/oaiart?codigo=4111420">http://dialnet.unirioja.es/servlet/oaiart?codigo=4111420
Zasób elektroniczny
Tytuł :
4-nonylphenol: effects, quantification and methods of removal in superficial and drinking water
Index Terms :
toxicity, pollutant, 4-nonylphenol, emerging, quantification
toxicidad
contaminante
4-nonil fenol
cuantificación
info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Área Ambiental
Tytuły dodatkowe :
4-nonilfenol: efectos, cuantificación y métodos de remoción en aguas superficiales y potables
URL :
http://worldcat.org/search?q=on:CKUNA+http://hemeroteca.unad.edu.co/index.php/riaa/oai+riaa+CNTCOLL">http://worldcat.org/search?q=on:CKUNA+http://hemeroteca.unad.edu.co/index.php/riaa/oai+riaa+CNTCOLL
https://hemeroteca.unad.edu.co/index.php/riaa/article/view/3235/3663">https://hemeroteca.unad.edu.co/index.php/riaa/article/view/3235/3663
https://hemeroteca.unad.edu.co/index.php/riaa/article/view/3235/3625">https://hemeroteca.unad.edu.co/index.php/riaa/article/view/3235/3625
Zasób elektroniczny

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies