Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Przeglądasz jako GOŚĆ

Wyszukujesz frazę ""high-temperature processes"" wg kryterium: Temat


Tytuł :
Investigation of the K-Mg-Ca Sulfate System as Part of Monitoring Problematic Phase Formations in Renewable-Energy Power Plants
Autorzy :
Fiseha Tesfaye
Daniel Lindberg
Mykola Moroz
Leena Hupa
Pokaż więcej
Temat :
sulfates
thermodynamic modeling
superheater tubes
high-temperature processes
slagging and fouling management
Technology
Źródło :
Energies, Vol 13, Iss 5366, p 5366 (2020)
Opis pliku :
electronic resource
Relacje :
https://www.mdpi.com/1996-1073/13/20/5366; https://doaj.org/toc/1996-1073
Dostęp URL :
https://doaj.org/article/a5e14d09e00a46c39a0ea4dfcd1aaf3a
Czasopismo naukowe
Tytuł :
Calculation of radiative heat transfer in laminar fluid flow in a channel
Autorzy :
U. V. Vidin
V. S. Zlobin
R. V. Kazakov
Pokaż więcej
Temat :
heat exchanger
high-temperature processes
thermal radiation heat exchanger
analytical calculations
nonlinear tasks
surface temperature
evaluation of t real thermal field “above”
evaluation of real thermal field “below”
eigen functions
eigen values
Production of electric energy or power. Powerplants. Central stations
TK1001-1841
Źródło :
Известия высших учебных заведений: Проблемы энергетики, Vol 0, Iss 5-6, Pp 3-7 (2017)
Opis pliku :
electronic resource
Relacje :
https://www.energyret.ru/jour/article/view/103; https://doaj.org/toc/1998-9903
Dostęp URL :
https://doaj.org/article/e3b8937780d1404d9a94e69682b7c274
Czasopismo naukowe
Tytuł :
Pressurized Recuperator For Heat Recovery In Industrial High Temperature Processes
Autorzy :
Gil S.
Góral J.
Horňak P.
Ochman J.
Wiśniewski T.
Pokaż więcej
Temat :
recuperator
heat transfer
flow
high temperature processes
Mining engineering. Metallurgy
TN1-997
Materials of engineering and construction. Mechanics of materials
TA401-492
Źródło :
Archives of Metallurgy and Materials, Vol 60, Iss 3, Pp 1847-1852 (2015)
Opis pliku :
electronic resource
Relacje :
http://www.degruyter.com/view/j/amm.2015.60.issue-3/amm-2015-0315/amm-2015-0315.xml?format=INT; https://doaj.org/toc/2300-1909
Dostęp URL :
https://doaj.org/article/45c59d33de6d4ae38efab4eb8135be7d
Czasopismo naukowe
Tytuł :
Экологический тупик от сжигания мусора и возможные пути его преодоления
Environmental Deadlock from Waste Incineration and Possible Ways to Overcome It
Autorzy :
Мазурин Игорь Михайлович
Понуровская Вера Владимировна
Колотухин Сергей Прокопьевич
Pokaż więcej
Temat :
В статье представлен анализ современного состояния задачи переработки бытовых отходов России. Рассмотрены причины серьёзных нарушений природоохранного законодательства, связанные с неконтролируемой работой полигонов. На основе данных системного анализа по шести основным способам переработки бытовых отходов, сделан вывод об отсутствии реальных перспектив процесса сжигания мусора из-за больших убытков от загрязнения земель сельхозугодий и серьёзной опасности для населения от диоксинов в выбросных газах мусоросжигающих заводов Хитачи-Цосен. В статье рассмотрены возможные альтернативы процессу сжигания бытовых отходов, которые были разработаны в России в конце прошлого века
The problem of of MSW (municipial solid wast) managenet/utilization/disposal/recycling remains and, we suppose, will remain for a long time the most acute and charged matter for human society both in Russia and around the world. At present, the influence of closely interrelated technical, socio-economic and political reasons is dominant in its resolution. These are primarily the problems of processing new polymers and household chemicals, new types of waste associated with the mainstreaming of electronics and electrical engineering in the everyday life, new knowledge on toxins generated during the MSW incineration (MSWI), as well as new types of taxes and new stage of struggle for world and regional markets, new channels and market outlets. In Russia, this mood turned spikiest due to the prospect of acquiring the MSWI plant and technology developed by Hitachi-Zosen Inova AG. The subject matter of our study is such a sore question of MSW management, as the rationale for decision in optimal way to disposing them in the light of current ideas about the landgilling and incineration toxicity and gate fees for these processess, as well as on the long-term social and environmental risks of such a choice. Since this is partly a review article, and partly a summation and synthesis (generalization) of our multi-year engineering and environmental field research, we use the methods of source and comparative analysis, as well as the historical-genetic and problem-critical approaches as the main methodological tools. The starting point of our critical analysis was the assertion that (a) the ‘waste-for-energy’ idea is nothing more than an advertising campaign (since at present the efficiency of converting thermal energy into electrical one in up-to-date incinerators is enough only to promote advertising) and (b) ‘dioxins-free’ (pollution-free) MSW incineration/pylolisis technologies (i.e., high-temperature processes) exist only on paper and are used as a tool for improving not market environment, but market conditions, conomic and political pressing and control. Considering that in Russia, ones planned to burn the entire volume of annual MSW production, i.e. 90 million tons per year, they need 128 MSWI plants with a capacity of 700 thousand tons of waste per year. During continuous operation of 128 incineration plants to dilute the concentration of dioxins to the standard, 5.37×1010 m/hour of clean air will be required. For the year, i.e. for 8760 hours, it will take 47×1013 m3/a, which by weight will give 5.8×1011 tons of air. Today in the world, about 250 million tons of household waste are burned annually with a concentration of dioxins at the inlet of the pipe of 0.1 ng/m3. For this reason, it is possible to estimate the air consumption for the dilution of dioxins as 1.5×1012 tons. Taking into account the generation of total waste on Earth for the year as 9 billion tons, i.e. 36 times more, we could argued that with the widespread use of waste incineration technology, the problem of lack of fresh air to dilute the waste gas from waste incineration at MSWI plants will inevitably arise. This in turn will lead to rapid and global pollution of the soil and atmospheric air with dioxins. Particular danger is the fine dust resulting from incineration. Due to the insignificance of size (0.1—1 μm), these particles will soar in the air for a long time. Although formally, the concentration of dioxins in the air can reach safe values in the surface layer at a height of 1.5—2 m from the surface of the Earth, but because of their smallness, such dust particles with dioxins on their surface are extremely dangerous for human health. We consider the most efficient MSWI alternative is low-temperature waste burning using catalysts, which allows carrying out the catalytic oxidation of all organic waste components. It is also important that during catalytic oxidation, the complete conversion of hydrocarbons into carbon dioxide and water takes place, and the process temperature is in the range from 500 to 700 °C, i.e. below the temperature of nitrogen oxides formation. Catalytic oxidation fundamentally excludes uncontrolled recombination of ions, since they are not formed in the process, and the effluent CO2 and water vapor have a low temperature (120—130 °C). In addition to platinum, less expensive metals and their salts can be used as a catalyst for the oxidation of hydrocarbons. Instead of expensive platinum, one can used less expensive metals and their salts as a catalyst for the oxidation of hydrocarbons. The most valuable advantage of the catalytic oxidation is hydrocarbons complete oxidation, which is fundamentally unattainable under flame combustion. For this reason, the cost of recycling is significantly lower, since it does not require a high factory pipe to dilute hazardous gas components and expensive multi-stage purification of waste gases from supertoxins with dust removal at the submicron level. The main thing is that there are no problems with dioxins, since aromatic hydrocarbons and all high-molecular hydrocarbon compounds are completely oxidized. In addition, the catalytic oxidation process does not require additional energy from an external source. However, the result of complete oxidation is only CO2 and H2O. Accordingly, having accepted restrictions on CO2 emissions, process developers had to abandon the use of catalytic oxidation of the MSW organic component. So environmental- and human-health-friendly zerow-dioxins technology turned out to be a victim of the Kyoto and Montreal Protocol, which have already proved (as many studies have shown, including those constantly published in the journal Space and Time), its senselessness and even harmfulness, given the unique properties of CO2 as a gas contributing to bio-productivity increasing. We also consider it very revealing that the EU, since 2017, has abandoned high-temperature MSWI in favor of MSW bio-recycling, both enzymatic and microbial (composting and even lanfilling). This means not only the care of the European governments about their citizens, but also the fact that (a) they achieved their goal of capturing the Russian market to backward technologies unload to it, and (b) the MSW landfills retain their conceptual potential. The catastrophic situation with them in Russia is associated only with the destruction of their management system in the 1990s. Today, the solution to the problem of landfills safe management in Russia is to bring their functioning in line with the Sanitary Regulations and Rules 2.01.28-85 and other regulatory-technical documents. Meanwhile, Russia has a priority in the development of a large-capacity and highly productive high-temperature incineration process that is safe for humans and the environment (patent RU 2648737 dated December 8, 2016). This process uses water vapor heated to 1700 °C and fed from the bottom through tuyeres into the shaft furnace by a counter flow to the layer of MSW descending from above, which at high temperature undergoes conversion to form SNG (synthesis gas) in the lower part of the shaft furnace and pyrogas in the bottom. After cleaning, both types of gases are mixed and fed for combustion in a gas turbine plant in order to generate electricity for their own needs. After turbo-power unit, the exhaust gad is supplied to greenhouses for heating and CO2 useing for plant nutrition. An important advantage of this process is the absence of unrecyclable solid waste, as well as dioxins, which are not formed in principle in the process. The cost of processing MSW tons by this method is at least three times lower compared to the Hitachi-Zosen MSWI plant, only due to the absence of the need for waste sorting and foreign components and consumables. In addition, not only electricity is produced in such MSW utilization, but also construction basalt-based materials, as well as metal. Howevwer, Russian authorities prefers dangerous and expensive Hitachi-Zosen MSWI plant because it allows them to received bonuses, to generate extra revenues and to launder profits. Our conclusions are as follows: (i) The purchase and construction of Hitachi Zosen’s MOSCOW NW700 MSWI plants with a capacity of 700 thousand tonnes of solid waste per year in Russia will create serious problems for the following reasons:  danger to life from dioxins emissions, submicron dust and nitrogen oxides
 project unprofitability for the budget of the state due to the low solvency of the Russian population
high dependence on supplying components and consumables
 partial plant operating time due to the rapid transboundary dioxin contamination of the adjacent farmlands and inevitable losses due to these farmlands depreciation
(ii) In the short term, due to the low paying capacity of the population, the purchase and launch of 230 foreign MSWI plans using budget funds will require an annual surcharge of 2 to 5 trillion rubles from the state budget for waste recycling, or the closure of plants due to lack of funds
(iii) The exclusion of domestic work performers from the work program as developers and manufacturers of equipment for MSW sorting and recycling means a complete loss of the domestic market for this sector of the domestic industry, eliminates the labor market in innovation sphere and creates additional social tension
(iv) MSW sorting and subsequent composting at landfills with mandatory monitoring of regulations implementation remain until now a real and safe technology for MSW processing provided by Russians’ consumer purchasing power
(v) The use of new developments in the field of MSW recycling implies the emergence of the Customer with the Terms of Reference and funding for the Contractors
(vi) In the task of MSW processing, it is urgently necessary to restore the priority of supervisory functions on the part of Sanitary and Epidemiological Supervision with respect to significance and role of other environmental, technical and economic supervisory authorities
твёрдые бытовые отходы
мусоросжигающий завод
переработка
сжигание
окисление
загрязнение атмосферы
пыль
шлак
полигоны
диоксины
фураны
CO2
municipal solid waste
MSW incineration plant
recycling
high-temperature and low-temperature burning
oxidation
air pollution
dust
slag
landfills
dioxins
furans
Tytuł :
Dioxion-/Furan-’Verbrennungsprofile’ aus Hochtemperaturprozessen: Teil III: Ein Beweis für den monomechanistischen Verlauf? ‘ThermoStat-Synthese’ statt ‘De novo’ für die ‘dirty 17’
Autorzy :
Luthardt, Peter
Schulte, Jochen
Hemminghaus, Hans-Joachim
Pokaż więcej
Alternatywny tytuł :
Dioxin/furan ‘combustion profiles’ in flue gas from high temperature processes — Part III (Discussion article
Źródło :
Umweltwissenschaften und Schadstoff-Forschung: Zeitschrift für Umweltchemie und Ökotoxikologie. March 2001 13(2):95-101
Czasopismo naukowe
Tytuł :
Dioxin-/Furan-“Verbrennungsprofile” in Abgasen aus Hochtemperaturprozessen: Teil II: Annäherung an eine thermodynamisch kontrollierte Reaktionsvariante mittels semiempirischer Molekülorbital-Methode unter Nutzung des MOPAC-Programmpaketes
Autorzy :
Luthardt, Peter
Schulte, Jochen
Pokaż więcej
Alternatywny tytuł :
Dioxin/furan “combustion profiles” in flue gas from high temperature processes — Part II
Źródło :
Umweltwissenschaften und Schadstoff-Forschung: Zeitschrift für Umweltchemie und Ökotoxikologie. July 2000 12(4):215-219
Czasopismo naukowe
Tytuł :
Dioxin-/Furan-“Verbrennungsprofile” in Abgasen aus Hochtemperaturprozessen: Teil I: Grundlagen der entstehung und profilcharakteristik unterschiedlicher anlagetypen
Autorzy :
Luthardt, Peter
Schulte, Jochen
Pokaż więcej
Alternatywny tytuł :
Dioxin/Furan “Combustion profiles” in Flue gas from high temperature processes
Źródło :
Umweltwissenschaften und Schadstoff-Forschung: Zeitschrift für Umweltchemie und Ökotoxikologie. May 2000 12(3):157-162
Czasopismo naukowe

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies